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Abstract

The prevalent document-topic models are based on Latent Dirichlet Allocation (LDA). Stop
words and words appearing with very low frequency in the corpus are generally removed before
the corpus is sampled. Here, I investigate the effect of these types of noise on the inference
process, in an attempt to identify the precise conditions under which they produce various
effects. The model is applied with and without stop words to real and artificial corpora. The
usefulness of the model is then analyzed with respect to the real data.

1 Introduction

In this paper I present a brief survey of statistical methods for topic modeling, as well as illustrating
several motivations for using such techniques. I will examine briefly Probabilistic Latent Semantic
Indexing (pLSI), as described in [Hof99]. In addition, the Latent Dirichlet Allocation method, as
proposed by [BNJ03], will be described in some detail, as it is this model and derivatives thereof
that are most commonly advanced as solutions to the problem of statistical topic modeling.

While the generative models of text corpora used in topic modeling are fairly straightforward,
inferring the parametrization of those models, given a corpus is much more difficult. Various
methods are therefore applied to the observed variables (documents distributed over words), in
order to infer the parameters of unobserved variables (the distribution of documents over topics,
and the distribution of topics over words). Methods of statistical inference most commonly used for
this are expectation maximization, variational distribution, and Gibbs sampling, the last of which
I employ here.

Like many solutions for statistical natural language processing, Gibbs sampling with Latent
Dirichlet Allocation suffers from the influence of noise words. Stop words, or words that occur
with very high frequency, tend to be syntactic, rather than semantic words, and have a potentially
skewing effect on the topic model. Low-frequency words, by contrast, are likely to impart highly
specialized semantic information; regrettably, these words are even more problematic, because their
tendency is to distribute themselves amongst the topics without bias. Worse, if the words occur
with very low frequency in the corpus, the individual instances of those words will not settle into
a particular topic, but rather their topic assignments will vary from one iteration of the sampling
algorithm to the next.

2 Uses of Topic Modeling

Topic modeling, and more generally, the field of data mining, has a broad range of applications, from
its usefulness in understanding and describing neurological transactions during language learning,

1



to its capacity to enrich and refine search queries. A common, general task for topic models is,
once trained, to be able to classify a given document with respect to the set of generated topics.
This could be used to organize a collection of documents with respect to their contents, or it could
be applied to meta-data concerning the documents, giving a more uniform set of terms by which
to find relevant documents, as described in [NHCS07].

Classically, researchers wishing to study natural language and natural language acquisition have
tried to create models whereby sentences (strings of symbols from the lexicon, in this case words)
are categorized as grammatical or ungrammatical, according to their membership in the language
generated by an innately human grammar. This approach, while undoubtedly both meaningful and
intriguing, has two drawbacks: it is impossible for a machine to generalize to the correct grammar,
given a finite subset of the strings generated by the grammar (a set of sentences on which to
”learn” the language), and sentences that are rejected by this categorization are often considered
perfectly acceptable by speakers of the language, furthermore, even malformed sentences can convey
meaning. [MS99] In contrast, statistical language processing permits a greater latitude with respect
to syntax, while simultaneously representing semantic content.

In order to demonstrate the utility of topic modeling, and to test and refine their entity-topic
model, Newman et al. modeled a corpus of 330,000 New York Times articles taken from the period
2000-2002 [NCS06]. The resulting topics and distributions represent a kind of Zeitgeist of the period
in question, in particular, it hints at the most significant entities (figures, places, and events), in a
topical context.

Though the language about topic modeling comes almost exclusively from the language of verbal
discourse, it is possible to apply topic modeling to non-verbal corpora. For example, [BL03]1

successfully modeled tagged images. Another possible application of topic-modeling to nonverbal
corpora is the modeling of consumer purchase trends. Due to barcodes and the digitization of
purchase transactions, retailers now maintain massive databases of information regarding the habits
of consumers. The topic-model might be successfully applied to these transactions to determine a
set of ”topics”, or more generalized purchase patterns of consumers, and to predict the purchases
individual consumers are likely to make in the future.

3 Probabilistic Latent Semantic Analysis (pLSA)

Probabilistic Latent Semantic Analysis was first proposed by Thomas Hofmann [Hof99], and incor-
porates the basic principle by which the great majority of topic modeling is performed. Hofmann
describes a model in which documents are distributed among an unobserved set of class variables
(topics), each of which is distributed over the vocabulary of the corpus. This is symbolized in the
following:

P (w | d) =
∑

z∈Z

[P (w | z) P (z | d)] (1)

where P (w | d) is the probability of w (a word) given d (a document), in terms of the probability
P (w | z) (the probability of a word given a topic) and the probability P (z | d) (the probability of a
topic given a document). Therefore probability of a particular word w appearing in the document
d is derived by summing the probabilities of that word appearing in the topic z multiplied by the
probability of z appearing the document for all topics z ∈ Z. Notice that this model does allow for

1Cited in [NCS06].
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Figure 1: Plate Diagram of Basic LDA model [RZGSS04]

polysemy (multiplicity of meanings), as a word could be generated from any of several topics, as
well as synonymy (multiple words with the same meaning), because multiple words with the same
semantic meaning are generated from the same topic. Also, unlike many previous models, pLSA
does not assume that a document is composed of only one topic. (To see why this assumption is
problematic, take the case of a proposal to tax housecats. Clearly, the document is composed of
at least two topics: taxation and cats, but a traditional model would coerce the document into a
single topic, both obscuring the true nature of the document and skewing the topic assignments.)

Unfortunately, the definition of pLSA restricts its use to those documents in the training set,
by virtue of its dependence on an index into the corpus to describe a document [BNJ03]. Clearly
this is a severely limiting quality, as one of the most useful applications of a topic model is to be
able to apply the model, once trained, to a new document in order to classify the document with
respect to topics. [BNJ03] propose to eliminate this restriction by making sampling a distribution
over topics for each document.

4 Latent Dirichlet Allocation (LDA)

4.1 Generative Model

Latent Dirichlet Allocation (LDA) is a generative model for document modeling detailed in [BNJ03]
and seeking to overcome the limitations of pLSA. The selection of LDA as a reasonable means for
document-topic modeling arises from the assumption of exchangeability made by a majority of
topic-models. Exchangeability in this context refers both to exchangeability of words within a
document, as well as exchangeability of documents within a corpus. Words are exchangeable within
a document if any pair of words (wi and wj) can be swapped within the document (that is wi

becomes wj and vice versa), and not alter the document. This property holds regardless of how
many times the swapping is performed, that is, any permutation of the words in a given document
yields the same document. The assumption of exchangeability of words is often referred to as
the ”bag of words” approach, while the corpus is a ”bag of documents”. It is the premise of
exchangeability that permits LDA to generalize to new documents.[BNJ03]

The following high-level algorithm is used to generate a document under LDA (from [BNJ03]):

1. Choose N ∼ Poisson (ζ).
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2. Choose θ ∼ Dir (α).

3. For each of the N words wn:

(a) Choose a topic zn ∼ Multinomial (θ).

(b) Choose a word wn from p (wn | zn,β), a multinomial probability conditioned on the topic
zn.

Where N is the number of words in the document (here this is selected from the Poisson distribution,
but better methods can be used depending on the corpus to be modeled.) Then the document-
topic distribution θ is sampled from a Dirichlet prior α, and the set of words is generated from
this distribution by repeatedly sampling a topic from θ and then sampling a word from the topic.
The key feature distinguishing LDA from pLSA is the selection of θ (a distribution over topics)
from Dir (α), instead of selecting a document index d from the corpus. This allows the LDA
model to generalize to documents outside of the training set. In the case of pLSA, the only possible
distributions of documents over topics are those found in the training set. LDA, by contrast, models
the document-topic distribution over all possible real-valued distributions for the given number of
topics. This is illustrated in Figure 2. Every possible sample point in the Dirichlet distribution
for the topic set represents a distribution of topics over the words of the vocabulary, and it is this
property which allows LDA to generalize beyond the training set.

4.2 Artificial Corpus Generation

Though the ultimate goal of topic modeling, and indeed all statistical language processing systems,
is to model real samples of natural language, it is useful to have a mechanism for generating corpora
that approximate real data, and whose parameters can be finely controlled. Here, the generative
nature of the topic models proves extremely valuable. In order to perform experiments on the
influence of classes of exceptional words, I created a simple generator that permits variation of
three parameters: the size of the vocabulary, the number of topics to create, and the number of
documents in the corpus. The generator can then be supplemented with tools to add stop words,
low-frequency words, and other additional data with which one wishes to experiment.

In the initial design, the generator chose document lengths randomly, in magnitude proportional
to the size of the vocabulary divided by the number of topics to be modeled. As the number of
topics is always several orders of magnitude less than the size of the vocabulary for any reasonable
corpus, the average length of each document was generally on a similar order of magnitude as
the vocabulary size. This process was chosen with two concerns in mind: that documents should
vary in length, and that documents should be sufficiently long to accurately express the topics
which contribute most significantly to them. For comparison, the Earlham College Community
Documents (ECCD) corpus has a vocabulary size of approximately 10,000 words after the removal
of stop words and low-frequency words, while the average length of each document is on the order
of 500. Because the results of experiments using this generator were unsatisfactory, I elected to
alter the generator, to produce corpora more in line with the ratios I encountered in the ECCD
corpus.
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Figure 2: Density Distributions p (w | θ,β) from [BNJ03] The points of the triangle represent words,
while locations marked with x are topics.

5 Bayesian Inference / Updating

Thus far, I have presented only the generative models of documents and corpora used in topic
modeling; however, topic modeling seeks to identify properties of an existing corpus. Statistical
inference is the process by which the distributions of documents over topics and of topics over words
are discovered, given a corpus. A number of algorithms have been proposed for this purpose, but
they all rely heavily on an extension of Bayes’ theorem (Eq. 2)

P (B | A) =
P (A | B)P (B)

P (A)
(2)

called Bayesian updating, which is an iterative application of the above equality, to successively
refine estimates of B, given an initial B0 and a series of events a ∈ A. For example, given an initial
estimate of the distribution of a particular topic over words w, and an infinite series of drawn words
from that topic, the estimate w’ can be refined to reflect the distribution used to generate the words,
to an arbitrary precision. Of course, this problem is somewhat more complicated in topic modeling,
where the only known distribution is the joint distribution of documents over words (joint because
it is the observed result of the unobserved selection of a topic in the document and a word in the
selected topic), from which w and z must be inferred.
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The assumption that a document is composed primarily of just a few topics is crucial to our
ability to infer both θ (the probability of a topic given a document) and φ (the probability of a
word given a topic). On the other hand, the smoothing effect of the Dirichlet priors means that
the topic model is unlikely to become mired in a self-fulfilling prophecy of sorts, in which all words
from all documents in the corpus are generated from the same topic. Intuitively, the process of
Bayesian updating under the LDA model works as follows:

1. For each d ∈ D:

(a) Select a word wi from d.

(b) Calculate the probability of wi having been generated by each of the topics in d.

(c) Probabilistically assign wi to a topic based on those probabilities.

(d) Update document-topic and topic-word distributions based on the above selection.

The likelihood of assigning a word token to a particular topic grows with the number of times
other tokens of the same word have been assigned to that topic, also different words from the same
document will have a greater likelihood of being assigned to the same topic.

Take a simple example of three documents and two topics. The topics are ¡cats, taxes¿. Doc-
ument A has the mixture ⟨0.5, 0.5⟩, document B has the mixture ⟨1, 0⟩, and document C has the
mixture ⟨0, 1⟩. On the first iteration of the inference algorithm, distribution of words in document
A with respect to topics will be random, in other words, the distribution over topics will be correct,
even though the distribution of topics over words will be grossly inaccurate. When document B is
sampled, the words will group naturally into one topic (which will ultimately become the ”cats”
topic), since the first meaningful word will be placed in one topic or the other, marginally increasing
the likelihood that subsequent word tokens from the document will be placed in the same topic.
The same will happen for C, although the words in C will tend to be assigned to the ”taxes” topic,
particularly since the topic assignments from sampling B will have greatly decreased the likelihood
of words in C being assigned to the ”cats” topic. After a large number of iterations, the distribu-
tion of words in the two topics will closely resemble the mixture from the generative model used to
create the documents.

6 Gibbs Sampling

The Gibbs sampling algorithm on the Latent Dirichlet Allocation topic model is scarcely more
complex than the high-level description presented in section 5. It follows:

1. Randomly assign a topic to each word token in the corpus.

2. For each d ∈ D:

(a) Select a word wi from d.

(b) Remove the influence of wi from the model.

(c) Calculate the probability of wi having been generated by each of the topics zj :

i. Calculate the probability of topic zj in d.

ii. Calculate the probability of word wi in zj .
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(d) Probabilistically assign wi to a topic based on the resulting distribution.

The Gibbs sampling algorithm terminates after some number n of iterations, determined before
sampling begins, rather than attempting to test for convergence. It is, however, customary to
save the state of the sampler at periodic intervals after some ”burn-in” period, during which the
word-topic and topic-document distributions are assumed to be too random to be meaningful.

The sampling algorithm has time complexity O(I ∗W ∗ 2T ), where I is the number of iterations
(typically on the order of 103), W is the total number of word tokens in the corpus, and T is the
number of topics to be inferred. Unfortunately, due to the progressive nature of the sampler, which
relies on repeated updating of probabilities and on random selection, it is difficult, though not
impossible, to parallelize.2

7 Stop Words

7.1 Syntactic or Semantic?

The notion of a class of semantic – ”meaning” – words is crucial to topic modeling, since a ”topic”
in a statistical probabilistic topic model is a distribution over words, whose individual and collective
meanings make up the topic. According to [GSBT05], ”[a] word can appear in a sentence for two
reasons: because it serves a syntactic function, or because it provides semantic content.”3 They go
on to state that ”[syntactic] constraints result in relatively short-range dependencies. ... Semantic
constraints result in long-range dependencies: different sentences within a document are likely to
have similar content, and use similar words.”4 Given these notions of syntactic and semantic classes
of words, it is useful to ask, which words are semantic words? Which words are syntactic words?
How does membership in these classes vary from corpus to corpus? From discourse to discourse?

7.2 Nature of Stop Words

Noise words have the potential to skew topic-document and word-topic distributions in a statistical
topic model like Latent Dirichlet Allocation. The most commonly treated type of noise is stop
words. Stop words are words which appear with great frequency in a corpus, or indeed, in any
corpus in the language in which the corpus is written. Stop words are usually function or syntax
words, which have no semantic meaning of their own. Examples of English-language stop words
include articles such as ”a” and ”the”, and prepositions such as ”of”, ”on” and ”beyond”.

A natural representation of stop words in the generative view of corpora assumed by topic
models like LDA is for all stop words to be generated from the same topic, which comprises a
large proportion of every document in the corpus. This view of stop words effectively models
them as members of a single topic in which membership means only that the word is meaningless
without context, that is, a semantic class of innately unsemantic words. In spite of any tendency
in human interpretation to view stop words in this manner, there is no compelling intuitive reason
to believe that stop words cluster in a topic model. Therefore, in an effort to determine the actual
behavior of stop words in a corpus, and the conditions under which they behave in particular ways,

2For more on this: http://www.ics.uci.edu/~newman/parallel_topic_model_newman_20060721.doc
3Emphasis added.
4It should be reiterated that it is precisely this assumption that permits topic models such as Latent Dirichlet

Allocation.
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I conducted several experiments with artificially generated corpora. Then, I modeled the Earlham
College Community Documents with and without stop words.

There exists another class of noise words, similar in nature to stop words, which apply not to
natural languages, but to discourses. Such an example is the decision by [NHCS07] to model the
topics of the OAIster catalog5 with words that were either ”topically too broad, or topically too
specific. Examples of topically broad words include january, february (months of the year) and
result, paper, study (words often used in research articles). Examples of topically specific words
include santa ana (city in California) and ladies repository (the name of a historic period).” While
the first type of words are similar in nature to stop words, the second are examples of very low
frequency words, which I discuss briefly in section ??.

7.3 Modeling the Effect of Stop words on Artificially-Generated Corpora

In the first series of experiments, I created a set of corpora using the generator described in 4.2.
Each corpus contained 1500 documents. The vocabulary size was varied in ten roughly equal-sized
increments between 375 words and 2283 words (1250±70%), while the topics remained constant at
15. A second set of corpora were created by fixing the size of the vocabulary at 1250 and varying
the number of topics in 10 roughly equal-sized increments, between 7 and 25 (15±50%). Stop words
were added from a list of 50 English-language stop words with proportion 1

5
to copies of each of the

twenty corpora, yielding twenty experimental corpora with twenty corresponding control corpora.
The increased document length was not taken into account in measuring the effect of the stop
words on the corpora. I conducted a second set of experiments, with parameters almost identical
to the first, but with the second incarnation of the generator (see section 4.1) and a stop words list
of only 25 words. Furthermore, the second set of corpora consisted of only 300 documents each. In
both cases, the stop words distributed themselves roughly evenly among the topics.

7.4 Stop words in Real Corpora

I was able to observe the effect of stop words on a real corpus by modeling the Earlham College
Community Documents corpus both with and without stop words. In the first run, an aggressive
stop words policy was employed, under which English-language stop words were removed.6 The
topic set that emerged from this run of the sampler was extraordinarily promising. Topics were
easily identifiable, with the exception of some small amount of noise that I had anticipated. The
topics generated from the second and third runs of the Gibbs sampling algorithm were semantically
not as useful. As in the case with the artificial corpora, the stopwords tended to distribute across
several topics, although of note is the fact that they were not distributed ”evenly” across all
topics. There was a single topic that occurred with high probability in nearly all documents, and
several others which were also composed primarily of stop words that occurred frequently in high
proportion in many documents. While the prominent semantic words in these topics did not have
(subjectively) a high degree of semantic correlation, the topics from the other, less frequent, lower
distribution topics did exhibit strong coherency. For instance, a strong topic from this category
was the ”ECS” topic, which included such words as ”software” and ”systems”, as well as entities
such as ”Moodle”, and ”Tom Steffes” (the current Director of Computing Services). Though this

5See http://www.oaister.org
6The list of stop words used can be found at http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/

stop_words
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second class of topics did contain noise words, they were less common, and overall the topics were
more focused.

8 Earlham College Community Documents (ECCD)

The Earlham College Community Documents corpus is a collection of approximately 800 docu-
ments, the bulk of which are committee meeting minutes from meetings between the years 2003
and 2007. Forty-four committees contribute to the Community Documents corpus, and this pro-
vides a natural number of topics to infer when running the Gibbs sampling algorithm on the ECCD
corpus.

I sampled only a portion of the full ECCD corpus, due to a bug in the initial implementation of
the code, which prevented me from using the full corpus. The reduced corpus had 400 documents,
instead of the approximately 800 documents of the full corpus. After tokenization and removal
of English-language stop words and low-frequency words, the reduced corpus has a vocabulary of
about 11,000 unique words. The sampling algorithm was allowed to run twice for 1,000 and 5,000
iterations respectively, given Dirichlet priors for both α and β of .05. The sampler was directed to
infer 45 topics.

Perhaps the most significant outcome of these runs was the production, in both cases, of a topic
which contributed significantly to all documents in the corpus (making up approximately 1/5 of the
entire corpus), whose most prominent members seemed to be ECCD stop words. For example, the
words ”committee”, ”faculty”, and ”meeting” were the most common words in this topic, while the
only two entities that appeared with any significant frequency were ”Earlham College” and ”Doug
Bennett” (the president of Earlham College during the period that the ECCD corpus covers). This
can be seen in Figure 3.

9 Conclusions

The Latent Dirichlet Allocation topic model is clearly a useful device with many significant and
worthwhile applications; however, its use must be supplemented with careful interpretation. Though
topic models are currently no substitute for the human eye, they can serve as a valuable assistive
technology, particularly when the corpus to be examined is relatively large in comparison with that
portion of it that is useful to the reader. The standard removal of stop words and low-frequency
words, while trivial to execute, may be anything but trivial in effect. It is difficult to predict
precisely the behavior of the topic model, given two corpora which differ only in their degree of
preprocessing. Furthermore, the lack of any mechanism for handling structure, indicated primarily
by syntactic words (which are removed before processing begins), is troubling in that it denies the
consumer of the information produced by the topic model vital semantic information conveyed by
the structure of the data.

10 Future Work

10.1 Low-frequency Words

I had originally intended to perform experiments on very low-frequency words similar to those that
I performed for stop words, because these words are also commonly removed from corpora before
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sampling. For example, [NCS06] removed all words that did not appear in at least 10 documents of
a corpus of 330,000 New York Times articles. While these words are undoubtedly noise to the model
– they occur so infrequently that the kinds of broad correlations inferred by LDA are impossible to
infer with any accuracy, they are also valuable semantic words, expressing extremely specific ideas
and information. In general, removal of these words would severely limit the qualitative efficacy
of a topic model; however, as models of this type do not accurately reflect the semantics of these
words in any case, their removal is no great tragedy, but merely a symptom of a deeper problem.

10.2 Document Focus

The ”bag of words” view of documents is useful in topic modeling applications, because it allows
models to treat only those words that are taken to be semantically meaningful, that is, those words
with long-range dependencies. Any human author (or indeed reader), would be appalled at the
suggestion that documents are mere ”bags of words”, as structure is an important component of
all levels of documents. It would seem useful, then, for topic models to account in some fashion for
structure in human-authored documents. To determine if this is feasible or useful, I had hoped to
conduct experiments regarding the focus of documents with respect to portions thereof. I intended
to measure focus as the largest portion of the document composed of some fixed number of topics,
that is, what is the maximum portion of the document that can be accounted for by summing the
distributions for the largest n topics in the document? Regrettably, I did not have enough time to
complete this portion of my exploration.
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Figure 3: ”Topic 11” from the ECCD corpus with stop words and low-frequency words removed.
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