
Earlham College

Computer Science Department

Senior Capstone, Fall 2012

Senior Research Paper

Author: Leif DeJong

December 12, 2012

Contents

1 Abstract 2

2 Introduction 2

3 Background Information 2

3.1 Adaptive User Interface . 3

3.2 Adaptable User Interface . 3

3.3 The Hybrid Model . 4

3.4 Multi-Platform User Interfaces . 4

4 The Web Context 5

4.1 Responsive Web Design . 6

4.2 Mobify . 7

5 The New Approach 7

5.1 Clients, Servers, HTTP Requests, and Cookies . 8

5.2 Gathering Information . 9

5.3 Limitations of a HTTP Request . 9

5.4 Generalizing the Device . 10

5.5 The Software Design . 10

5.6 Server Pre-Processing . 11

5.7 Client Processing . 11

5.7.1 Calculating Throughput . 12

5.7.2 User Verification . 12

5.7.3 Dynamic Content . 12

5.8 Server Post-Processing . 13

6 Measuring the Software 13

7 Addressing Screen Types 14

8 Dealing with Network Changes 14

9 Conclusion and Results 14

1

1 Abstract

This paper looks at the history of user-centered design and covers some current methods for

dealing with multi-platform interfaces in the context of the web. It attempts to determine what

it means for an interface to adapt to a user’s environment, characteristics, and situations. The

paper proposes a new method for implementing an adaptive system that pays special attention

to each user’s particular needs and circumstances. The paper also looks at a software solution to

the new approach and discusses the results.

2 Introduction

With the vast array of devices that are available in today’s world, there is a need to create interfaces

that are rendered on those devices appropriately. In addition, the tasks that users perform on

these devices largely vary. Users have di↵erent characteristics and require di↵erent interfaces that

depend on their needs and circumstances. For nearly a decade, these issues have been thought

about and concepts such as adaptive and adaptable user interfaces have been proposed. So far,

there is no one solution that directly attempts to solve all of these issues at once. Developers

find it di�cult to create compatible software as platform languages and hardware characteristics

vary from device to device. In addition, creating interfaces that map uniquely to a given device

is time consuming, ine�cient, and practically impossible with the vast array of platforms that

exist today. Attempting to determine a user’s usage on a device presents itself as a challenge

given the vast capabilities of a particular device. Regarding accessibility, many interfaces are not

tuned to be helpful and intuitive for the physically disabled and more energy is spent on the

average human than on the special cases. If it were somehow possible to identify user’s unique

characteristics, devices, and circumstances, one could tailor an interface to suit those individual

needs creating a personalized and optimized environment for that user. That said, the rise of

web technology including HyperText Markup Language 5 (HTML5), Cascading Style Sheets 3

(CSS3), JavaScript (JS), and HyperText Preprocessing (PHP) has opened the door to a universal

language that developers can turn to.

3 Background Information

Before attempting to explain and focus on the idea of a universally accessible and uniquely tailored

interface, it is important to look at the research that has already been done in this area. Charlie

Peck from Earlham Colleges quotes, ”don’t reinvent the wheel.” There are two philosophies at

hand when dealing with interface adaptively. One involves creating an auto rendering fixed

environment for the user called an Adaptive User Interface (AUI). The other involves creating a

customizable and flexible environment called an Adaptable User Interface (ABUI). Both concepts

fall under the category of Human-Computer Interaction (HCI) which is a subset of computer

science that deals with developing software with the user primarily in mind. In addition to

this, we will look what it means to be a multi-platform interface paying specific attention to the

utilization of the web as a tool for accomplishing this.

2

3.1 Adaptive User Interface

An Adaptive User Interface (AUI) is an interface that adapts to the characteristics, behaviors,

and preferences of the user. Generally speaking, the system monitors the user’s interaction with

the system and ”adapts” its interface to match those characteristics. According to Stuerzlinger,

most of modern software makes all user options available up front cluttering the environment,

making it di�cult to find specific functions, and leaving very little room for actual work to be

accomplished [Stuerzlinger et al., 2006]. An example of this is Adobe Photoshop where most of

the options are splashed on the desktop in the form of widgets cluttering the interface and leaving

very little room for image manipulation. An adaptive approach to the Photoshop problem would

monitor what the user does with the software and in turn make widgets available or unavailable

depending on the widget’s usage. According to Tufte, 10% of a user interface should be devoted

to the admin controls while 90% should be given to the actual content at hand [Tufte, 1997].

AUIs can reduce a cluttered interface by displaying elements only appropriate to the user. This

approach allows end users to have a personalized experience that is intuitive and understandable.

The users are not bothered with irrelevant information and are allowed to focus in on the tasks at

hand in an e↵ective manner. In a world that demands results, tasks can be completed faster and

with less e↵ort than before, improving overall e�ciency. Researchers have tried to come up with

ways to accomplish this for nearly a decade and according to Bunt, for such an interface to become

possible, one must be able to model cognitive processes and produce quantitative predictions of

the user’s behaviors based upon their previous interactions. These behaviors are then compared

against an existing user model in order specify the nature of adaptation that fits that particular

user’s needs [Bunt et al., 2004].

Although there are many positive aspects to AUIs, Bunt states that most AUIs are known

to have implementation flaws and cause unpredictable results that often do not map appropri-

ately to the user. Users feel a lack of control for their environment and become confused with

unexpected results [Bunt et al., 2004]. AUIs make the user interface less flexible and customiz-

able as the rendering is determined by the program not the user. These issues may not be

as important for some contexts but Stuerzlinger states that users seem to be surprised when

their environment suddenly changes in the case of Adobe Photoshop’s widgets appearing and

disappearing[Stuerzlinger et al., 2006]. There has to be a certain amount of freedom to let the

user choose their interface and decide how to interact with it.

3.2 Adaptable User Interface

An Adaptable User Interface (ABUI) according to Stuerzlinger, is one where the users are able

to customize their environment by manipulating preferences provided by the developer. These

customizations allow users to create fully personalized environments that match their needs and

gives them the freedom to change those configurations on the fly [Stuerzlinger et al., 2006]. Studies

by Bunt, show that users prefer the freedom of ABUIs. This particular interface reduces the time

it takes for users to complete a task than if they were using the default configurations of that

system. Bunt also points out that it is more e↵ective for users to customize their environment up

front in some sort of setup than on the go as they are using the system. There are two levels of

customization that can be provided to the user. The first is called surface customization which

3

involves simplistic modifications to the UI. The second is called deep customization which involves

changing the functions of the underlying system to reflect the user’s preferences. Developers lean

towards surface customization as it reduces the amount risk in manipulating deep system calls

from the user’s end [Bunt et al., 2004]. Apple does this by giving users the ability to change

the appearance of the desktop background, system settings, and buttons in the top menus in

applications such as Finder, but does not allow changes to core system files.

Although ABUIs give users the freedom to create their own environment, there are several

challenges that face this approach. How do you motivate users to keep their systems up to date and

how much customization do you allow them? If you provide user’s with too much control, software

often malfunctions and breaks. There has to be a balance between restricting customization and

allowing absolute freedom. Users should not be confused by the flexibility of the system but

should not feel that they have a lack of control.

3.3 The Hybrid Model

With AUIs and ABUIs, there are many factors that are called into question regarding their

functionality. How much customizable freedom should be given to a user without endangering

the system? How can the system prevent users from feeling that they don’t have control over

their environment? How can you ensure that the matching of the user model correctly maps to

a specific user? AUIs and ABUIs seem to clash conceptually as they are quite opposite from

each other but if they were to be combined, they can provide a very e↵ective user experience.

This is what I refer to as the hybrid model where AUIs help the user maintain a ABUI. In other

words, the software helps the user customize his or her environment. Bunt states that the hybrid

model can help users be selective in what features they want in their environment. An example

of this involves an interface that monitors the user’s activities and issues suggestions for how

to make their system more personable and tailored to their needs. The users can approve or

disapprove these prompts and the system will adapt based on those decisions. Bunt also suggests

that it is important to help users maintain their personalized environment as their tasks evolve

over time [Bunt et al., 2004]. This model can also help users customize their interfaces early on

in an attempt to increase productivity. This hybrid model should assist users in exploring their

environment, exploiting its full capabilities, and helping them understand which aspects of that

environment are automatic. In addition, Kuhme states that users should also have the ability to

take back control anytime upon their request and be able to revert to defaults or saved settings

[Kuhme, 1993].

3.4 Multi-Platform User Interfaces

When looking at AUIs and ABUIs, it is also important to identify the context in which the

software is being used. In modern times, the increase in multiple devices such as cell phones,

smart phones, tablets, laptops, and large screen TVs has been so dramatic that developers are

often forced to program for each of these devices separately and individually. As Foss puts it,

”we have hit a point where screens sizes are moving in every direction, both bigger and smaller”

[Joly, 2012]. Not only do they have to focus on the user’s characteristics with reference to AUIs

4

but also how the interface renders on the user’s device. According to Gajos, software should be

able to render on any platform at the users command along with reflecting the characteristics of

that individual user [Gajos and Weld, 2004].

The problems associated with this approach is the there is no way developers can possibly

program for all kinds of devices e↵ectively. For example, it is ine�cient for developers to program

for an iPhoneTMin Objective C and then replicate that same program for an AndroidTMphone

in Java. It is vital to tailor software to the needs and characteristics of the end user without

replicating code. Factors such as cultural backgrounds, geographical locations, disabilities, and

device capabilities have to be taken into account when thinking about the end user. Examples

of these include language, symbols, units, currency, network types, network quality, and special

needs devices. In addition, it is very important to know a device’s capabilities and limitations

when creating an interface tailored to it. With the array of language and hardware constraints,

how does one begin to determine the best method for a multi-platform interface that unique

addresses a given user?

4 The Web Context

If a device is capable of accessing the Internet in the 21st century, it is most likely capable of

parsing web languages such as HTML5, CSS3, and JS. We can use these tools to program an

interface once while maintaining compatibility from device to device. This becomes incredibly

convenient and powerful as the Internet is becoming more and more popular. More people now

are accessing the Internet on mobile devices than on conventional desktops [Wroblewski, 2011].

As a result of this, multi-platform design for the web becomes a priority to developers in this

day and age. It is imperative to tailor websites to the devices they are rendered on and improve

loading time for those with poor networks. The goal is to get information to more people in more

countries faster.

When looking at the current state of most websites, one finds that they are designed for

desktops that rely on fixed width displays. This resulted from designers wanting to control how

their interface looked on a given browser. It was easier to fix the display and guarantee that it

render the same way on every device than to make it render di↵erently according to the screen size

[Marcotte, 2011]. This has created huge problems as the fixed width displays are often distorted

and too big to view on mobile devices, forcing users to pan and zoom. In addition, the same is

true on large TV screens, except that the display of fixed widths is often too small to read. It

is much more di�cult for designers to rely on fluid width displays as those kinds of designs are

prone to unpredictable appearances.

When mentioning network types and speeds, it is important to note that not everyone has

high speed Internet access, especially in third world countries. In addition, devices such as smart

phones are not capable of viewing high quality images and video so why make them download all

that unusable information? When users have to wait a long time for a given page to load, they

become frustrated and leave without the opportunity to take advantage of what that page has to

o↵er.

These issues have to be addressed as fixed width displays are no longer the best approach

5

to web design, multiple renditions of the same program is ine�cient, mobile devices often can’t

take advantage of high quality images and video, and network speeds vary from region to region.

Developers need one way of working with code so that their software renders on any device with

any given network e↵ectively and e�ciently. Instead of looking at every device as an individual

entity, one must generalize the interface to match some categories such as tablets and smart

phones versus specific devices such as iPhones R�and iPads R�.

When attempting to develop a method for multi-platform interfaces that uniquely address

user’s characteristics, one must know some of the tools that currently deployed today. In this

next section, I will go over two approaches for multi-platform interface design. One method is

called Responsive Web Design (RWD) coined by Ethan Marcotte and the other is Mobify JS

created by Igor Faletski, John Boxall and Peter McLachlan.

4.1 Responsive Web Design

Responsive Web Design (RWD) is a method of using a browsers screen size to determine how

a website’s interface adapts to a given device. According to Marcotte, it consists of ”a flexible

grid-based layout, fluid images and media, and media queries...from the CSS3 specification.”

[Marcotte, 2011] RWD uses a technique called graceful degradation. According to Florins, this

process involves identifying a source interface, designing for the most optimum or default case of

that interface, and then creating transformation rules in order to produce code that targets a more

specified environment. In order to accomplish this, you first split the user interface into chunks

then create image and widget transformation rules allowing them to shrink and expand according

to the device’s screen size. Depending on the target, you then reshu✏e the widgets and chucks

so that they conserve more space and then remove any unnecessary widgets while maintaining

the overall purpose of the interface [Florins et al., 2006]. The tools that make RWD possible is

the theory of graceful degradation in combination with CSS3 media queries. Marcotte defines

media queries as ”an incredibly robust mechanism for identifying not only types of media, but for

also inspecting the physical characteristics of the devices and browsers that render our content.”

[Marcotte, 2011] The specification allows you to identify a maximum and minimum browser width

and override core CSS for that particular width range. This is the magic behind RWD that allows

device specific design adaptation of the user interface. We can program for specific screen ranges

that allow us to determine whether the device is in a particular category such as desktop, tablet,

smart phone, etc. This allows us to generalize the code and avoid programming for every single

device separately. RWD uses flexible images and media in addition to a grid system that helps

elements fall into place depending on the device they are rendered on.

This problem with RWD is that it does not address network throughput nor address opti-

mization of content. The approach is largely client side and redundant code in the form of media

queries are loaded on the client’s device and may never be executed. RWD is a key component

in designing multi-platform interfaces that uniquely identify the user but it is not the answer to

the approach.

6

4.2 Mobify

Igor Faletski, John Boxall and Peter McLachlan started a company in Canada called Mobify.

The company takes a very di↵erent approach to multi-platform interface design with regards to

the web than RWD does. The company leads an open source project called modify.js which is a

library for taking existing fixed width websites and renders mobile versions of them. The script

makes pointers to specified HTML tags and data that are copied over to a mobile template that

can be rendered in a separate manner than the main site. The mobile template can use di↵erent

styles and scripts and resides on a di↵erent URL than the main site. When the user updates the

desktop version of the site, the mobile version will automatically sync as its data is referred from

the desktop version. This is a client side implementation of mobile adaptation and does not deal

with wide screen TV displays.

The main limitations of this approach is that it does not address network throughput and

content optimization. In addition, if the HTML structure is changed on the desktop version of

the site, it can potentially break the mobile version that refers it. This makes the mobile version

less flexible and the scope of adaptation is very limited. The rendered is also executed on the

client decreasing performance and e�ciency [Mobify, 2012].

5 The New Approach

When talking about multi-platform adaptable interfaces, it is not enough to just talk about

their design but also how they function and perform. There is a need to optimize a website’s

content depending on the recipient of that content. This involves a server-side processing strategy

where one has to account for image and video optimization depending on network throughput

and screen width. According to Wroblewski, developers should also use image sprites to group

images into a single file, bundle and minify styles and scripts cutting down on HTTP requests,

limiting dependencies on large JS libraries that are not e↵ectively used, use appropriate HTTP

headers to optimize server-client communication, and take advantage of CSS3 to replace heavy JS

functionality. [Wroblewski, 2011] Optimizing web content is very important as every detail of the

software adds up and learning how to manage that e�ciently is crucial. The current techniques

covered do not take the optimization of content into account limiting ways to best serve content

to a specific user.

7

5.1 Clients, Servers, HTTP Requests, and Cookies

Figure 1: Clients-Server Communication

A client is defined as the user’s device or a device that is making a request for some information

coming from a remote source. A server is defined as the device holding the information that the

client is requesting. When a client makes a request to the server, it makes a request called an

HTTP request. The request is sent from the client and processed by the server. After parsing

the request, the server sends the client back the information it requested. HTTP requests are

incredible useful as they contain a lot of information about the user. Some of this information

includes the client’s IP address, the requested data, the client’s user agent, and the client’s

language. The user agent is information about the client that includes the client’s actual device,

the browser, and the operating system running on that device. [W3, 2012] A cookie is a textile

typically generated by the server upon receiving a HTTP request that is sent and stored in the

client’s web browser. Upon succeeding requests from the client, the cookie is sent back to the

server, processed, and sent back to the client. The cookie can contain information about the user

such whether they are logged in and what they were viewing before making another request. The

information can be encoded in such a way that only the server can make sense of it as other

resources will not be able to interpret what the contents of the cookie mean. The idea behind a

cookie is to allow information to be shared and kept in sync between the client and the server.

Using JS, a cookie can be made and kept up to date by the client. [Central, 2012] Based on

the HTTP request information and the cookie, the server can know more about the client and

render a suitable website that is appropriate and e�cient. The idea is to take the majority of

the adaptation away from the client’s end and have the server render a site knowing the client’s

specific constraints.

8

5.2 Gathering Information

In order to produce a multi-platform interface, developers have to first collect as much information

about the user as possible. If a developer can identify a user, the user’s device, the device’s

constraints, and the way the user uses that device, it becomes possible to produce a personalized

environment which matches those factors. From an HTTP request, information such as the user’s

device capabilities, the user’s geographical location, and the user’s language can be known. When

the client makes the initial request to the server, information can be extracted from that request.

Using server-side languages such as PHP or CGI, we can extract the information from the HTTP

request and parse the data storing values into variables. One of the key pieces of this data when

dealing with multi-platform adaptability is the user-agent. This information contains the user’s

device and software running on it. We can run this information against a pre-existing database

until we hit a match. Once we have identified the device and the server can make sense of it, we

can proceed to render a site that is appropriate to that platform.

5.3 Limitations of a HTTP Request

Figure 2: HTTP Request Information (Server Side)

There are many limitations when solely relying on the information extracted from the HTTP

request. The most important one deals with the user agent’s information for determining the

device capabilities and constraints. Devices such as the iPad mini R�and the Android Tablet
TMhave the same user agent information as their predecessors the iPad R�and Android TM. This

makes it impossible to distinguish between these devices that have very di↵erent capabilities in

terms of their screen size and hardware. Already it is time consuming and ine↵ective to keep

track of all the millions of devices that exist today and store them in a database. The lookup

costs of matching a user agent to that database is high and often unpredictable. It is also likely

that the database may not contain information about the device that the server is looking up.

Another important factor is that you can not determine network throughput from the information

present in an HTTP request. This makes it impossible to render content without some client-side

collection of information when optimizing the user’s experience. In addition, referring back to the

idea of a hybrid model with AUI and ABUI, the information in the HTTP request can not be

modified leaving the user very little control over the nature of adaptation.

9

5.4 Generalizing the Device

Figure 3: Device Categorization - http://www.zauraliyev.com

To address the problem that developers face when trying to program for every specific platform

imaginable, one can generalize a device and have code that is guaranteed to work for that catego-

rization. This can be done by identifying the screen width of a particular device and then coming

up with ranges that define which category that device falls under. Some examples of categories

include: desktops and above; laptops and tablets; portrait phones and landscape phones. Once a

device is appropriately categorized, a set of rules can be applied to render content that matches

that device and screen width. This approach is powerful because every single device imaginable

will fall under one of these categories. In addition, this approach makes it trivial to change or add

a new device as a category, such as a tablet mini, by making slight modifications to the screen

ranges.

5.5 The Software Design

A better approach in developing multi-platform interfaces that are uniquely tailored to the charac-

teristics of a specific user is to preform server pre-processing to optimize the website’s framework.

The client then does processing to determine the user’s screen width and network speed. The

server then does post-processing to produce optimized dynamic user content. The interface must

be able to: identify the characteristics of the user; be flexible and scalable matching the dimen-

sions of the user’s device; have one code core instead of di↵erent renditions of the same software;

and optimize content such as images and video depending on the network and the device.

10

5.6 Server Pre-Processing

Figure 4: Server Pre-Processing

When a client initially makes an HTTP request to the server, there is an opportunity for pre-

processing to take place. The server can read the request, record the initial information known

about the user, consolidate and compress styles and scripts, and compress and optimize the site’s

HTML framework. The user’s content has not yet been optimized at this point as a result of

the lack of information about the user’s screen width and network throughput. In addition, the

content can not be optimized until the user has confirmed the nature of adaptation as stated in

the hybrid model for AUIs and ABUIs. This pre-processing can be written in any server-side

language such as PHP and should also incorporate RWD concepts for better display. Once the

pre-processing is complete, the rendered information is sent to the user.

5.7 Client Processing

Figure 5: Processing Information (Client Side)

Once the server sends the initial optimized HTML framework back the client now can start

processing the user’s onboard characteristics. The two pieces the framework cares about is the

screen size and calculating the network throughput. The screen size can be extracted from the

the Document Object Model (DOM) of the browser and measurements can take place to calculate

network throughput. Once the network throughput is known, the framework can categorize the

connection speed as fast, medium, and slow by matching it to a pre-defined range. The screen

width is also categorized to determine the generalized device type as explained above. This initial

gathering and categorizing of information can be done in JS as it is one of the only languages

that can perform client-side operations.

11

5.7.1 Calculating Throughput

Figure 6: Calculating Throughput

To avoid reloading the framework, JS has a tool called Asynchronous JS and XML (AJAX)

that allows the client to send and receive data from the server without refreshing the page. This

can be used to calculate the network throughput by initially starting a timer and sending a load

of 1KB to the server. When the server returns the 1KB load to the client, the timer is stopped

and the lapsed time is calculated. This can be done n times and the results can be averaged to

get the most reasonable measurement for network throughput.

5.7.2 User Verification

Once all the client’s data has been calculated and collected, a dialog confirmation message can

be issued to the user for verification of the findings. A button is available in the framework to

change these confirmations on the fly. This allows the user to have some control over how the

website adapts for their specific device. Once the user approves the information, the throughput

and screen width along with other characteristics that have been calculated are stored in an array

and written to a cookie so that the server can access this information on the subsequent HTTP

request.

5.7.3 Dynamic Content

To conserve the information that was just processed by the client, AJAX can be used to bring in

content and load it in the framework dynamically. The AJAX request is like any other HTTP

request in that is holds some client information along with the contents of the cookie. This

decreases redundant client processing and brings optimized pieces of content to the client faster.

The server keeps processing and optimizing content and makes it available to the client on demand.

12

5.8 Server Post-Processing

Figure 7: Server Post-Processing

After sending the initial framework to the client, the server waits until it receives an AJAX

request for content as stated above. The cookie is read and the information is stored into variables.

Using some conditions, the server can determine the size and quality the images and videos should

be by matching it to the device and network category as determined from client processing. The

images and video are optimized along with any other content and sent back to the client where it

is rendered in the framework.

6 Measuring the Software

Figure 8: Measuring the Software

In order to test that this method is e↵ective, one must be able to measure the loading speed

of the framework with content and compare that to a static counterpart. A timer page is initially

loaded on the client that has stop watch capabilities. The timer starts and the framework or

static counterpart is then loaded into an iframe. Once the loading finishes, the timer stops and

13

the lapsed time is calculated. The developer can manipulate the screen width and network speed

to run more tests on di↵erent conditions. This gives developers a reasonable way to measure the

e↵ectiveness of the interface and understand the optimal points.

7 Addressing Screen Types

When talking about the vast array of screen types, there is a solution called ”Mobile First”

developed by Luke Wroblewski. The approach states that an interface should be designed thinking

about a mobile environment first. This forces developers to embrace the constraints of a mobile

device upfront and understand the capabilities to fully maximize the user’s experience. With

regards to screen types (touch, pointer, etc..), this approach means that all elements of a site

will be touch compatible and degrade appropriately depending on the screen width. JS allows

touch events to be issued creating a compatible way to program touch directly into your interface.

[Wroblewski, 2011] This method scales well because if an interface is optimized for touch, it will

also easily support clicking and pointing on other screen types.

8 Dealing with Network Changes

Networks, whether wireless or physical, are irregular as speeds tend to fluctuate at an unpre-

dictable rate. As a result, it is important to not find a balance for n where n is the number of

AJAX requests in throughput caculation but also recalculate throughput to maintain accuracy.

This can either be done on every content request or after a certain amount of time has lapsed. The

cookie must always be updated and kept in sync with the server to minimize incorrect rendering

of an interface.

9 Conclusion and Results

The amount of AJAX requests needed to determine network throughput creates a slower loading

speed as communication is often slower than computation. A balance in the ratio of communi-

cation and computation has to be established. The number (n) of AJAX requests to calculate

network throughput has to be proportional to the speed. For instance, if the network speed is fast,

less tests have to be carried out. If the network speed is slow, more tests should be carried out to.

In addition, there should be more tests carried out in a network that fluctuates more frequently

than others. When looking through the results, I found that the adaptive interface produces

better results than its static counterpart when the network is slow and the screen width is small.

When the screen width is maxed and the network is fast, there is not much optimization taking

place and the communication during the throughput calculation makes the site load slower than

its static counterpart. Therefore this framework will help those with smaller devices and worse

network speeds than those with larger devices and faster network speeds. Overall, this project

was a success in creating a multi-platform interface that deals with user’s unique characteristics

and situations.

14

Bibliography

[Bunt et al., 2004] Bunt, A., Conati, C., and McGrenere, J. (2004). What role can adaptive

support play in an adaptable system? In Proceedings of the 9th international conference on

Intelligent user interfaces, IUI ’04, pages 117–124, New York, NY, USA. ACM.

[Central, 2012] Central, C. (2012). Cookie central.

[Florins et al., 2006] Florins, M., Simarro, F. M., Vanderdonckt, J., and Michotte, B. (2006).

Splitting rules for graceful degradation of user interfaces. In Proceedings of the 11th international

conference on Intelligent user interfaces, IUI ’06, pages 264–266, New York, NY, USA. ACM.

[Gajos and Weld, 2004] Gajos, K. and Weld, D. S. (2004). Supple: automatically generating user

interfaces. In Proceedings of the 9th international conference on Intelligent user interfaces, IUI

’04, pages 93–100, New York, NY, USA. ACM.

[Joly, 2012] Joly, K. (2012). One design to rule them all?. University Business, 15(2):49 – 50.

[Kuhme, 1993] Kuhme, T. (1993). A user-centered approach to adaptive interfaces. In Proceedings

of the 1st international conference on Intelligent user interfaces, IUI ’93, pages 243–245, New

York, NY, USA. ACM.

[Marcotte, 2011] Marcotte, E. (2011). Responsive Web Design. Je↵rey Zeldman, New York, NY,

USA.

[Mobify, 2012] Mobify (2012). http://www.mobify.com/mobifyjs/].

[Stuerzlinger et al., 2006] Stuerzlinger, W., Chapuis, O., Phillips, D., and Roussel, N. (2006).

User interface facades: towards fully adaptable user interfaces. In Proceedings of the 19th

annual ACM symposium on User interface software and technology, UIST ’06, pages 309–318,

New York, NY, USA. ACM.

[Tufte, 1997] Tufte, E. (1997). Visual explanations: images and quantities, evidence and narra-

tive. Graphics Press.

[W3, 2012] W3 (2012). http://www.w3.org/protocols/rfc2616/rfc2616-sec14.html.

[Wroblewski, 2011] Wroblewski, L. (2011). Mobile First. Je↵rey Zeldman, New York, NY, USA.

15

