
Gesture Recognition for Virtual Orchestra Conducting
Using the Kinect

Edward Ly
Earlham College

801 National Road West
Richmond, Indiana 47374
esly14@earlham.edu

Keywords
gesture recognition, conducting gestures, beat pattern ges-
tures, music interfaces

1. INTRODUCTION
The idea that one could conduct a virtual orchestra is

nothing new. Indeed, since the debut of the Buchla Light-
ning in 1991, the possibility has been ever present, but the
limits of existing technology make such a possibility imprac-
tical in a mass setting. Nevertheless, the problem of virtual
conducting in computer music research remains to be devel-
oped. While there have been a number of efforts made in
this realm using a wide variety of available hardware, there
is yet to be a virtual conductor that is powerful enough to
be suitable for live performance, whether it be in a concert
hall or in a recording studio. The Microsoft Kinect, which
debuted in 2010, is one recent piece of hardware that we
believe paves the way forward for further development into
this problem.

There has been plenty of interest in and research into
the Kinect from the academic and open-source communi-
ties, with its motion tracking capabilities having particular
interest for virtual conducting applications. OpenNI has
been one such framework for accomplishing this task un-
til around 2013, when Apple bought PrimeSense and the
OpenNI framework. The Kinect for Xbox One was also
released that year, and as compatability issues have been
raised between the two versions of the Kinect, open-source
development around the Kinect has been stagnant as well.
In the following year, the original OpenNI website1 was shut
down, and many other associated libraries, such as the NITE
middleware that provides skeleton tracking for OpenNI, are
no longer available for download. While the OpenNI 2 bina-
ries and source code are still currently available,2 NITE has

1http://www.openni.org/
2now http://structure.io/openni for the binaries and
https://github.com/occipital/openni2 for the source

ACM ISBN 978-1-4503-2138-9.

DOI: 10.475/123 4

not. For this reason, an open-source alternative for OpenNI
and NITE must be established.

In the next section, we will highlight and compare sev-
eral papers detailing the different implementations that have
been attempted while listing some of the benefits and draw-
backs of each system. Afterwards, we will propose our own
system that addresses some of the prior concerns while us-
ing one possible alternative for OpenNI and NITE, and then
outline the tasks to be done in order to accomplish building
this system.

2. PREVIOUS RESEARCH

2.1 Earlier Hardware
In 2006, Lee et al. used modified Buchla Lightning II ba-

tons to create a system that controls the tempo, volume,
and instrumental emphasis of an orchestral audio recording
[4]. Additional control of the playback speed of the accom-
panying orchestral video recording has been implemented as
well. The gesture recognition itself uses a framework called
Conducting Gesture Analysis (CONGA) to detect and track
beats, while a variation of a phase vocoder algorithm with
multi-resolution peak-picking is used to render real-time au-
dio playback. While video control will likely be outside the
scope of our research, volume control and instrumental em-
phasis can provide an added sense of realism on top of what
the Kinect already provides. In the ten years since then,
however, the Buchla Lightning has been discontinued, mak-
ing the CONGA framework obsolete as well. In addition,
the framework itself, while touting a recognition rate close to
100 percent, has a latency described as “acceptable for non-
professionals, [but] professionals will find the latency much
more disturbing” [3]. Indeed, the system has made only one
public appearance in a children’s museum that same year.

In 2012, Han et al. developed their own virtual conduc-
tor system that relied on ultrasound to gather 3D positional
data [2]. Hidden Markov models were implemented to pro-
cess the data and recognize the gestures that would then
control tempo, volume, as well as instrumental emphasis.
Compared to the Kinect, their model is more simplistic in
that the computer only has to recognize the position at one
point on a baton rather than at multiple points on the body.
We hypothesize that this may reduce CPU load significantly,
allowing the system to be accessible to more consumer hard-
ware. However, there is no mention of the amount of latency
that is involved at any stage in the system when the gesture
recognition is touted to be reliable with about 95 percent ac-
curacy. Further research will need to determine the amount

http://www.openni.org/
http://structure.io/openni
https://github.com/occipital/openni2
10.475/123_4


of latency of this system and whether or not this system
remains viable for use in a live performance.

In 2014, Pellegrini et al. proposed yet another gesture
recognition system using RGB/depth cameras, but they use
this system for the specific purpose of soundpainting, com-
posing music through gestures in either live or studio envi-
ronments [6]. Hidden Markov models are also used here to
detect a custom set of gestures and to trigger a variety of
different musical events. Gesture recognition for the pur-
pose of creating custom virtual instruments is a problem in
computer music research that bears a large resemblance to
the problem of conducting a virtual orchestra, as both at-
tempt to manipulate sound in some shape or form. However,
tempo is not as much of a factor when playing a musical in-
strument, and when a song is already predetermined, such as
in a live orchestral performance, being able to detect beats
and maintain tempo is crucial.

2.2 Microsoft Kinect
One of the first known uses of the Kinect for the pur-

pose of virtual conducting was in 2014, when Sarasúa and
Guaus developed and tested a computer’s beat-detection ca-
pabilities using the Kinect [7]. The application was built
with the ofxOpenNI module,3 a wrapper around OpenNI
as well as NITE and the SensorKinect module. Human
participants were also involved to contribute to the com-
puter’s learning capabilities, even though human error and
time deviations had to be taken into consideration. This
approach is especially useful as a starting point given that
the beat-detection algorithm is about as simple as calculat-
ing the current amount of vertical acceleration and finding
local minima or maxima. Their application, however, only
serves to test the effectiveness of the algorithm and not yet
have the music react to the change in tempo given by the
live placement of beats. Our project aims at the very least
to include the ability for the music to react to said beats.

The following year, Graham-Knight and Tzanetakis use
the Kinect for yet another purpose, namely for creating
touchless musical instruments for people with disabilities [1].
Here, the positional data from the Kinect is sent to the vi-
sual programming language Max/MSP through the Open
Sound Control (OSC) Protocol for analysis and playback.
While the system does react to the gestures being made,
the application usually requires more than one attempt for
the gesture to be recognized. Moreover, a bigger limiting
factor of this system is the 857 ms average latency, which
is too large to be practical for live performances. It is un-
clear which part of the system contributes the most to la-
tency, whether it be the Max/MSP language or the Kinect
itself. Nevertheless, our project aims to develop an applica-
tion with a latency small enough that both the performers
and the audience would not notice.

3. OUR DESIGN
Our goal is to build a virtual conductor application for the

Kinect that requires nothing but open-source, cross-platform
libraries. To achieve this, we will use the XKin library4 de-
veloped by Pedersoli et al. as an alternative to NITE for
its gesture recognition and learning capabilities [5]. This li-

3https://github.com/gameoverhack/ofxOpenNI
4https://github.com/fpeder/XKin

brary is built on top of the libfreenect library,5 which is an
open-source alternative to OpenNI and continues to be up-
dated by the OpenKinect community even today. OpenGL
will also be a requirement in order to provide a GUI for the
user as well as to verify and debug the input stream from
the Kinect.

Once a gesture has been performed and recognized, there
are two possible ways to output audio. The first is to di-
rectly specify the sound that is to be played. Libraries such
as PortAudio have high-level APIs for generating and out-
putting audio through ALSA. The second is use JACK to
route the gesture trigger message to an external audio ap-
plication, specifically to a digital audio workstation (DAW)
such as LMMS,6 for ease of composing an orchestral piece as
well as ease of manipulation of tempo for the received mes-
sages. We will start with the first method to ensure working
audio interaction, and then proceed with the second method
as time permits.

Regardless, time will only permit the application to be
tested and run under Ubuntu 14.04, but the cross-platform
nature of all libraries used will allow for future work to add
compatibility for Windows and Mac computers as well.

4. TIMELINE
Our plan is to develop the following parts of the applica-

tion with the following deadlines:

• October 26: Develop a preliminary test build for the
application by learning a simple gesture and control-
ling the playback of a sawtooth wave.

• November 2: Add more complex gestures, particularly
conductor gestures, and add more control over the saw-
tooth wave accordingly.

• November 9: Integrate JACK for routing gesture mes-
sages to LMMS for integration with VST instruments
and synthesizers.

• November 16: Complete the first draft of the paper.

• November 23: Continue working on application. Com-
plete outline for the poster.

• November 30 or December 4: Presentation

• December 12: Complete the second draft of the paper.

• December 16: Complete the final draft of the paper.

5. REFERENCES
[1] K. Graham-Knight and G. Tzanetakis. Adaptive music

technology using the kinect. In Proceedings of the 8th
ACM International Conference on PErvasive
Technologies Related to Assistive Environments,
PETRA ’15, pages 32:1–32:4, New York, NY, USA,
2015. ACM.

[2] S. Han, J.-B. Kim, and J. D. Kim. Follow-me!:
Conducting a virtual concert. In Adjunct Proceedings of
the 25th Annual ACM Symposium on User Interface
Software and Technology, UIST Adjunct Proceedings
’12, pages 65–66, New York, NY, USA, 2012. ACM.

5https://openkinect.org/wiki/Main_Page
6https://lmms.io/

https://github.com/gameoverhack/ofxOpenNI
https://github.com/fpeder/XKin
https://openkinect.org/wiki/Main_Page
https://lmms.io/


[3] E. Lee, I. Grüll, H. Kiel, and J. Borchers. Conga: A
framework for adaptive conducting gesture analysis. In
Proceedings of the 2006 Conference on New Interfaces
for Musical Expression, NIME ’06, pages 260–265,
Paris, France, France, 2006. IRCAM &#8212; Centre
Pompidou.

[4] E. Lee, H. Kiel, S. Dedenbach, I. Grüll, T. Karrer,
M. Wolf, and J. Borchers. isymphony: An adaptive
interactive orchestral conducting system for digital
audio and video streams. In CHI ’06 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’06,
pages 259–262, New York, NY, USA, 2006. ACM.

[5] F. Pedersoli, N. Adami, S. Benini, and R. Leonardi.
Xkin -: Extendable hand pose and gesture recognition
library for kinect. In Proceedings of the 20th ACM
International Conference on Multimedia, MM ’12,
pages 1465–1468, New York, NY, USA, 2012. ACM.

[6] T. Pellegrini, P. Guyot, B. Angles, C. Mollaret, and
C. Mangou. Towards soundpainting gesture recognition.
In Proceedings of the 9th Audio Mostly: A Conference
on Interaction With Sound, AM ’14, pages 18:1–18:6,
New York, NY, USA, 2014. ACM.

[7] A. Sarasúa and E. Guaus. Beat tracking from
conducting gestural data: A multi-subject study. In
Proceedings of the 2014 International Workshop on
Movement and Computing, MOCO ’14, pages
118:118–118:123, New York, NY, USA, 2014. ACM.


	Introduction
	Previous Research
	Earlier Hardware
	Microsoft Kinect

	Our Design
	Timeline
	References

