
Data Compression Techniques for MPEG-4 Files

Daniel Wilson
Computer Science,
Earlham College,

Richmond, Indiana,
dlwilson13@earlham.edu

1. INTRODUCTION
As better technology becomes available, the quality of

videos increases. Resolution, frame rates, and color options
can all be improved to provide a better user experience.
These advancements come at the cost of data, since higher
quality video will require more storage space. This means
video files will take up more space on hard drives and take
longer to send over network connections. The motivation
for this project is to combat these issues by examining ex-
isting data compression algorithms for MPEG-4 files and
attempting to improve them to further reduce the space re-
quired to store data. While many file formats and codecs
have been researched as methods of compressing video files,
this project will focus on the open-source Xvid codec avail-
able at https://www.xvid.com/ and the MPEG-4 file format
due to their accessibility and popularity.

2. BACKGROUND INFORMATION

2.1 Motion Compensation
Since this project deals with the compression of MPEG-4

files, it is critical to understand their architecture. MPEG
files consist of three major frame types, which are called I
frames, P frames, and B frames [6]. These frames minimize
the space required to store a video file through a process
known as motion compensation. I frames, often referred
to as independent frames, contain all the necessary data
to display that particular image on the screen. They do
not rely on information from any previous frames to be dis-
played. P frames, by contrast, take advantage of the fact
that a frame in a video is likely to be similar to previous
frames [6]. Since the colors and general locations of im-
ages are likely to be resemble previous frames, P frames
use motion vectors to represent the movement of blocks of
pixels. Instead of storing all of the information represent-
ing the color of each pixel, P frames are able to represent
much of the information in the frame as positional changes
from the previous frame. B frames are similar to P frames

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

except that they use bidirectional prediction. This means
they not only use motion vectors to predict the motion of
future blocks of pixels, but they also use backward predic-
tion to represent the locations of blocks at previous frames.
While more predictive frames use less space, it is necessary
to use independent frames as a starting off point from which
predictions can be made. Thus, MPEG files contain a se-
quence of I, P, and B frames, as is exemplified in the figure.

2.2 Transform Coding
Another important compression technique MPEG files use

is known as transform coding [6]. Transform coding divides
an image into 8 x 8 pixel blocks. Instead of storing the color
code for each pixel in the image, transform coding uses a
discrete cosine transformation to represent the approximate
color for each of the pixels. For small size blocks of pix-
els, the difference isn’t noticeable to the human eye, but it
largely reduces file size.

2.3 Entropy Encoding
The final technique MPEG files use to compress data is en-

tropy encoding. Entropy encoding is a method of compres-
sion that takes advantage of the fact that certain sequences
of bits may appear more often than others by represent-
ing more common sequences with fewer bits [6]. It replaces
longer sequences of bits that appear often in a file with a
shorter sequence specifically meant to represent the longer
sequence. This reduces the overall file size, since the most
common information requires the least space to store.

2.4 Features
One important aspect of compression algorithms for MPEG

files is that they must allow a certain set of core features.
Compressing a video file is far less useful if it compromises
the ability to use basic features one would expect when
watching a video. For example, a good compression algo-



rithm must allow for random access [3]. From a practical
standpoint, users watching a video will often want to skip to
a particular part in the video. While minimizing the file size
may be helpful when storing or transferring the information,
the user still needs to be able to access random parts of the
video for the compression algorithim to be practical. Other
important features of an MPEG compression algorithim in-
clude forward searches, reverse playback, audio-visual syn-
cronization, and robustness to errors [3].

3. PROBLEM DEFINITION
The problem with data compression is that it is nearly

always a trade off. A video file, for instance, could be easily
reduced to require much less space, but this would require
significantly lowering its quality. Conversely, a video that it
higher quality may look better, but will take up more space.
Data compression algorithms attempt to do a reasonable job
of both; they attempt to maintain a decent level of quality
while also keeping the file size as small as possible. To ad-
dress this problem, people are always experimenting with
better methods of storing data.

4. PROJECT DESIGN

4.1 Solution
Much of the research thus far in this field is focused on

minimizing the storage space of a video file with minimal, if
any, compromises made in quality. While this approach may
be elegant, it is not always practical. Sometimes slightly
larger compromises should to be taken if a video is being
watched over a poor internet connection, or the screen being
used to watch a video is small. Current implementations of
compression algorithms also do not take into consideration
where the focus of the viewer is likely to be. A viewer’s eyes
are likely focused on the center of the screen, causing them
not to pick on details in the corners of the screen. Much
space is wasted storing this information, even though most
users will not notice it. I plan to address this issue in my
project. I also intend to experiment with increasing the size
of the blocks used for the discrete cosine transformation.
The quality difference may not be particularly noticeable,
and there is little research using blocks at any size other
than 8x8 pixels.

4.2 Hardware
Video files and compression algorithms are commonplace

on many modern electronic devices. I can code algorithms
and test video quality on hardware already available to me,
and thus I will not require any additional hardware for this
project.

4.3 Software
The software that I plan to use is called Xvid, which is

a free, open source codec for MP4 files. I will use it as a
starting point, and will attempt to further its compression
capabilities using the ideas previously described, and any
new ideas I discover as I experiment with the software. Be-
low is a visual representation of how the encoder, data file,
and decoder interact to store and play video.

4.4 Budget
Since the software is free and no new hardware will need

to be acquired, the project should not have any expenses.

5. TIMELINE

• October 21: Be familiarized with the Xvid codec, how
it works, and how to make simple modifications to it
to change compression.

• November 6: Have unique, decently working, personal
compression algorithm. At this point I will have ex-
plored Xvid and experimented with ideas for some
time, so I hope to have added some of my own ideas
to the codec.

• November 8: Complete a general outline of the paper
to serve as a guide.

• November 16: Complete the first draft of the paper.

• November 30/December 4: Be prepared for project
presentation.

• December 12: Finish second draft of paper.

• December 16: Finish final draft of paper and software.

6. REFERENCES
[1] S. Gringeri, R. Egorov, K. Shuaib, A. Lewis, and

B. Basch. Robust compression and transmission of
mpeg-4 video. In Proceedings of the Seventh ACM
International Conference on Multimedia (Part 1),
MULTIMEDIA ’99, pages 113–120, New York, NY,
USA, 1999. ACM.

[2] J. Katto and M. Ohta. Mathematical analysis of mpeg
compression capability and its application to rate
control. In Proceedings of the 1995 International
Conference on Image Processing (Vol.2)-Volume 2 -
Volume 2, ICIP ’95, pages 2555–, Washington, DC,
USA, 1995. IEEE Computer Society.

[3] D. Le Gall. Mpeg: A video compression standard for
multimedia applications. Commun. ACM, 34(4):46–58,
Apr. 1991.

[4] D. A. Lelewer and D. S. Hirschberg. Data compression.
ACM Comput. Surv., 19(3):261–296, Sept. 1987.

[5] K. Mayer-Patel, B. C. Smith, and L. A. Rowe. The
berkeley software mpeg-1 video decoder. ACM Trans.
Multimedia Comput. Commun. Appl., 1(1):110–125,
Feb. 2005.



[6] K. Patel, B. C. Smith, and L. A. Rowe. Performance of
a software mpeg video decoder. In Proceedings of the
First ACM International Conference on Multimedia,
MULTIMEDIA ’93, pages 75–82, New York, NY, USA,
1993. ACM.


