A Low-Cost Device for Flood Disaster Preparation Using
an Arduino Board

Bryce Rainey
Earlham College Department of Computer Science
801 National Rd W
Richmond, Indiana
barainey12@earlham.edu

ABSTRACT

This paper lists and explains the steps taken to create a low-
cost and energy-efficient device that detects rising water and
alerts the proper personnel via email of a flood situation. It
describes how to assemble the Arduino, YL-69 soil humidity
sensor, which is used as a water level sensor, and YL-38
module, as well as how to program it in C using the software
provided by Arduino. The particular Arduino model used is
the Yun because it contains built-in WiFi.

This paper also provides reasons and motivations for creat-
ing such a device, including the statistics, safety benefits,
and practicality of the application. Most details of the tech-
nology incorporated in the project will be thoroughly ex-
plained for readers that are not familiar with the area of
computer science.

1. INTRODUCTION

Advancements in technology are made day by day, and as
new gadgets are being released, new ideas are generated in
the minds of humans. Many people assume that these ideas
are aimed at bettering the lives of people in technologically
advanced areas such as the United States and parts of Eu-
rope. While these gadgets and ideas may be helpful and
entertaining, most do not benefit, nor protect, the people
living in parts of the world that are not as technologically
advanced.

Instead of focusing on bettering the already-convenient lives
and safety of people with new, complex contraptions, the
main focus needs to shift to implementing simple technolo-
gies into areas that are prone to natural disasters, specifi-
cally flooding. In 2013, accounting for 44 percent of the total
deaths from natural disasters, flooding was ranked number
one in the world[1]. This statistic alone demonstrates the
need for technology to be implemented in places that are
highly susceptible to flooding.

Although the devastation from natural disasters seems diffi-

cult to prevent, the technology used is surprisingly modest.
When I speak with non-computer science students about
various topics in the field, they often become confused and
tell me what I do is too complicated for them to under-
stand. Although they are able to operate their electronic
devices at a more basic level, they seem to be entirely un-
aware of what the hardware and software based levels of
their devices consist of. While there are many complicated
things in computer science that require complex resources
and knowledge one cannot quickly attain, there are multiple
things that can be done with just a few basic components.
At Earlham College, we have access to basic components,
like Arduino boards and sensors, which can assist in the
preparation for flooding. The device I set out to create falls
under the category of technologies that can be designed by
combining those components with a computer programming
language called C.

This is why I set out to produce a low-cost and energy-
efficient flood preparation/prevention device that could be
deployed in various areas in the world. This device has the
potential to save lives, and to give people a chance to save
important documents and irreplaceable items.

2. BACKGROUND

There are devices like this that are currently available and
being used. The Iowa Flood Center (IFC) teamed up with
the U.S. Geological Survey (USGS) to design a device that
detects a rise in water level and sends a text message to
whomever needs to be notified. Those devices are expen-
sive, especially when one plans to mass-distribute them. The
USGS operates these types of devices and they normally cost
between $15,000 to $20,000 each. The IFC wanted a cheaper
alternative, so they designed a device, shown in Figure 1,
that contains a sonar sensor for detecting the distance be-
tween the water and itself, a built-in cell phone modem for
communication, and a power source charged by solar energy.
The USGS agreed to operate them for a much cheaper price
of $3,500 due to their simplicity[2].

It is logical that one’s initial thought would be that these de-
vices would be implemented in, or near, bodies of water, but
they could actually be placed anywhere. Just because a par-
ticular area does not have a body of water near it does not
mean that a flood could not happen. For example, it is com-
mon to hear of basements flooding from substantial rainfall.
The reason this happens is because those houses were built
in low spots of the terrain. When it rains, the water runs

Figure 1: Water level sensor used by the IFC, pro-
vided by Stephen Mally/The Gazette, 2014.

down from the high spots into the low spots where these
houses are located, and the water travels through openings
and cracks that lead down to the basement. Not only does
this cause property damage, it has the potential to ruin irre-
placeable items. These damages could be prevented by the
implementation of the simple device by providing homeown-
ers with a warning so they can take appropriate action.

The development of a low-cost device offers numerous im-
provements to all areas in the world. Its simplicity and small
size gives people the ability to place this device in almost any
area with a WiFi connection.

3. HARDWARE

The hardware used in this project consists of a microcon-
troller, a soil humidity sensor and module, and a portable
source of power, all contained in a waterproof container.
Cost and functionality were the main factors in determining
which pieces of hardware to use.

3.1 Microcontroller

The main component of this project is the microcontroller.
This piece of hardware is programmed to control all other
components connected to it. The particular microcontroller
I chose to use is the Arduino Yun, shown in Figure 2, because
the integrated development environment (IDE) to program
it is free to download, and it contains built-in WiFi. The
WiFi is essential to the project because it provides a sim-
ple method of communication, which is email, between the
microcontroller and the receiver of the email. In order for
the Arduino Yun to determine whether an email needs to be
sent or not, it must compare the readings it gets from the
Sensor.

The Arduino receives the readings in the form of voltage
through an analog input pin. After receiving the voltage, the
Arduino converts the analog value into a digital value be-
tween 0 and 1023 (0 corresponds to OV and 1023 corresponds
to 5V)[3]. Those readings represent a numerical value that
can be compared to one another. These two types of input
pins and their values will be further explained in the next
section.

3.2 Soil Humidity Sensor & Module

There are two common ways to detect and measure water
level. One way is to use a float-arm and a potentiometer.

It is comprised of a floating object that is attached to the
end of an arm. The other end of the arm is connected to
the potentiometer. As the water rises, the floating object
also rises. The potentiometer measures the angle of the arm
to determine the water level. This method is often used
for measuring fuel in the gas tanks in vehicles because of
its durability, reliability, and low cost[4]. Since my device
is designed to be applicable outdoors, a float-arm has the
potential to be damaged by its surroundings. The other
way is to use a sensor that detects moisture. The YL-69
sensor, shown in Figure 2, is what is used in this project. It
is originally intended to be used as a soil humidity sensor,
but it functions the same as a water level sensor by detecting
moisture on its prongs.

Along with the YL-69, a module by the name of YL-38,
shown in Figure 2, is used to connect the sensor and the Ar-
duino together. The sensor communicates the same as most
sensors do by sending measurements in voltage. Voltage,
or sometimes referred to as current, is the most common
method of communication between sensors the microcon-
trollers they are synced with. The way the sensors are able
to communicate with the microcontrollers are through two
kinds of input pins. Sensors connected to a microcontroller
through an analog input would read out a smooth and con-
tinuous voltage output that is constantly being relayed to
its microcontroller for analysis. Contrary to analog inputs,
devices that are connected to a microcontroller through a
digital input would read out a definitive voltage that re-
mains constant with no continuous fluctuation[3].

Analog inputs are in the form of waves. As time passes by
and the connected device is relaying data to the microcon-
troller, the data can be logged and transformed into a visual
representation to simplify the way it is understood. Figure
3 shows that over an unspecified period of time, there is a
smooth and continuous wave of voltage being read. An ex-
ample that utilizes this fluctuating looking signal would be
a microphone. Within a microphone, you have a sound sen-
sor that detects when sound is being directed into it. Upon
detecting the sound, an analog signal is then sent to the mi-
crocontroller to let it know that it is sensing something and
action needs to be taken. The microcontroller analyzes the
voltage it is receiving from the sensor. It then begins com-
municating with its other devices connected to it that con-
trol the amplification and output of the audio signal through
whatever method of amplification being used[5]. This may
seem like a complex and time-consuming process, but it is in
fact quicker than we could possibly imagine. A more feasible
way of thinking about an analog input is to think of it as a
roller coaster. Although the roller coaster has a maximum
and minimum height (voltage) it can achieve, it can read
out any height between that maximum and minimum.

Not only can analog inputs be used for sound, but digital
inputs can be too. While their forms of communication using
voltage are similar, the actual signal from digital inputs are
different than analog inputs. The digital readings that the
microcontroller receives look like boxes when represented
visually in a graph, shown in Figure 3.

Even though voltage readings from a digital input are con-
stant with no continuous fluctuation, a graph of digital read-

Arduino Yun

Integrated

Circuit

Module

Figure 2: Image showing the hardware and how it is all connected.

_Volts (v)

Time (t)

--120
Volts (v)

Figure 3: Graph of voltage through an analog input
(red) and a digital input (blue), over time, provided
by SparkFun Electronics.

ings can look like a graph of analog readings. By zooming
very far out on a graph of digital readings, as shown in Fig-
ure 4, one can see that the graph looks very similar to the
red waves in Figure 3. Taking a closer look at Figure 4 shows
that the graph still maintains the box-shaped voltage mea-
surements even though it appears to be a continuous wave
of voltage.

An example that uses digital input is an integrated circuit.
An integrated circuit is the little black chip on the micro-
controller. Figure 8 has an arrow pointing to the integrated
circuit on the Arduino Yun. This little black chip contains
many pathways filled with transistors, resistors, and capac-
itors that regulate voltage signals traveling around in the
microcontroller. Programming the integrated circuit allows
for personal customization of the microcontroller. A simple
way to think about this is to picture a switch that turns
a light on and off. When you turn the switch on, voltage
is allowed to travel through an integrated circuit and pro-
vide power to the light bulb. By then turning the switch

Time (t)

Figure 4: Zoomed out graph of voltage through a
digital input over time, provided by SparkFun Elec-
tronics.

off, the integrated circuit terminates the voltage from the
switch and the light bulb. These regulators open and close
pathways for voltage instantly, which explains the vertical
jumps in voltage from OV to 5V, as well as 5V to 0V, in
Figure 3.

3.3 Power Source and Waterproof Container
In order for the Arduino Yun to be able to operate, it needs
a USB power source. Depending on where this device is
implemented, a portable source of power may need to be
provided. I decided to use a rectangular, rechargeable bat-
tery stick, shown in Figure 5, that provides 5V to the device
it is connected to via USB and a micro-B port on the other.
It fits perfectly in the container with the Arduino Yun and
other pieces.

3.4 Total Cost

The main focus of this project is disaster preparation, but
the main goal is to develop a device that costs much less
to produce and operate while maintaining the efficiency and

Figure 5: Portable and rechargeable 5V battery.

reliability existing devices offer. The costs of the hardware
components used in this project are as follows:

e Arduino Yun - $69.95
YL-69 Sensor & YL-38 Module - $2.99

e Portable Battery - $4.49

Waterproof Container - $19.95

Total - $97.38

Compared to the IFC’s $3,500 device, this device costs sig-
nificantly less. To be exact, the total cost for this device
costs 97.2% less than the IFC’s device.

4. SOFTWARE

The software portion of the project requires an integrated
development environment (IDE) that enables the Arduino
Yun to be programmed in C. As the Yun contains built-in
WiFi, I have chosen to use a platform called Temboo that
utilizes email as a method of communication.

4.1 Arduino Software

One of the best characteristics of the Arduino IDE® required
to program the Arduino Yun is that it is free. This is a cru-
cial part to keeping the cost of this device as low as possible.
Some may think that since the software is free to down-
load, there must be a catch or that the software does not
come with everything necessary to program Arduino boards.
However, this is not the case as the software comes with tem-
plates, examples, and a library of functions.

Within the Arduino IDE, there are a couple features that
prove to be greatly beneficial to first-time users. After open-
ing the software, the user is presented with a template that

!Arduino has IDE versions available for Windows, OS X,
and Linux][6].

briefly explains how the general Arduino programs are struc-
tured and operate. From there they have the option to cre-
ate their own program from that template, or they have the
opportunity to start from an example.

The software allows the user to choose from many different
example sketches. The reason this is so beneficial is that it
provides a way for novices to get comfortable with the pro-
gramming as well as the interface of the software. Not only
do the sketches give users examples of programs, but they
provide brief explanations of how to connect the necessary
hardware to the Arduino board for testing them. Once the
user is comfortable with the software, they can begin cre-
ating their own programs. Another useful tactic users can
adopt is finding an example program within the Arduino
sketches and use it as a building block for creating their
own program.

These example sketches would not be able to run properly
without the proper libraries that define the functions used to
communicate with the Arduino microcontroller. In order for
the software to successfully communicate with the Arduino,
functions like pinMode(), delay(), and analogRead() need
to be defined. Function definitions are provided in Table
1. Arduino has conveniently provided those libraries as a
built-in feature in the download of the IDE.

Declares the type of pin, analog or dig-
ital, and whether it is outputting or in-
putting data.

Declares how long of a pause the pro-
gram takes before continuing.

tells the Arduino board to retrieve data
from a specified pin.

pinMode()

delay()

analogRead()

Table 1: List and explanation of the functions men-
tioned.

4.2 Languages and Platforms

There are multiple programming languages used in the world
including C, C++, Python, and Java, just to name a few.
The programming language the Arduino software utilizes is
C. While it is not the easiest language to learn to code in,
C is currently the most-used programming language. The
functions mentioned in section 4.1 are examples of the C
code used in the program for this device.

The majority of the necessary functions are provided in the
Arduino library, but this device required a way of being able
to communicate via email so further libraries were needed
to enable the use of Temboo. Temboo is a platform that
runs and manages pieces of code called Choreos[7]. Choreos
have many uses, but this device uses the Choreos to send
emails. Temboo is then linked to a Gmail account, which
will be explained in the next section of the paper.

5. CONFIGURATION OF THE PROJECT

In the process of designing this device, there were connec-
tions that needed to be set up in order for the Arduino Yun
to be programmed. After the setup and programming is
completed, the device is ready to be tested on a small scale.

5.1 Setup

The first step was to connect the Arduino Yun to WiFi.
This is the most crucial step of the process because without
WiFi, there would be no method of communication to alert
someone of the rising water level. When powering on the
Arduino, it creates a WiFi signal. In order to connect the
Arduino to the WiFi, I had to connect my laptop to the
signal of the Arduino and type in the IP address of the
Arduino in a web browser. From there, I was able to log into
the board and choose the WiF1i signal I wanted it to connect
to. The Arduino then performs a reboot. Once finished,
I opened up a program called PuTTY, entered in the IP
address of the Arduino associated with Earlham College’s
WiFi, and created a Secure Shell (SSH)?, completing the
connection to the internet.

Now that there is a connection, making emails possible re-
quires the setup of accounts that send and receive the emails.
My initial plan was to write a program to create an email
client that uses the SMTP protocol to send the email. Due
to the security constraints on Earlham College’s WiFi once
again, the simplest way to do this was to create a Temboo
account and two Gmail accounts. The reason for creating
two Gmail accounts is one of them will be receiving the
email alerts and the other will be the sender. The Gmail
account sending emails will be linked with the Temboo ac-
count. Temboo acts as the middle-man in this process. In
order to link the Gmail account and the Temboo account,
a series of privacy forms that allow access between the two
accounts had to be completed. After all permissions were
granted, it was time for the last two pieces of hardware to
be set up.

The YL-69 soil humidity sensor and the YL-38 module are
connected to one another, shown in Figure2, in order to
create a connection to the Arduino Yun. The YL-69 has
two prongs coming off of it that allow wires to be connected
to it. Those wires connect to one end of the module. On the
other end of the module, there are four prongs labeled A0
(analog), DO (digital), GND (ground), and VCC (voltage).
This device requires the wires to be connected to the pins
A0, GND, and VCC. The opposite ends of those wires are
what connect to the Arduino Yun. The AO wire connects
to the AO pin, the GND wire connects to the GND pin,
and the VCC wire connects to the 5V pin. All of these
pins are connected to the analog side of the Arduino, not
the digital side. The reason the digital pins are not used
is because digital readings only read out 0 and 5V, while
analog readings read everything in between. Recall that
this concept was explained in subsection 3.2. Everything is
now set up and ready to be programmed.

5.2 Programs

The first phase was getting an email sent successfully. The
example sketches that are included in the Arduino software
contained a sketch regarding sending an email through Tem-
boo. This is where the first step was taken because like
I said earlier, people often use these sketches as building
blocks to their own creations. The code gives the program-
mer the option to change the target email address to their

2Earlham College’s security constraints on their WiFi re-
quire the use of PuTTY and using a SSH to be granted
internet access.

liking. There is also an additional program called a header
file, which contains the personal information required for the
use of the Temboo account. The second phase was acquir-
ing readings from the sensor. This process requires just a
few lines of code in which an input pin is assigned and two
integer variables are created and assigned the data readings
received from the sensor. The creation of these programs is
shown in Figure 6.

Program: acquires and

compares readings from Program: sends email
Y¥L-69 sensor

~ 7

Final program: does
both

Figure 6: Diagram showing the combined programs
making the final program.

Finally, the third phase was blending the two together to
create the final program, along with additional code to com-
pare values. Combining the two programs together is simple,
but the code for comparing readings with one another is a
different story. In order for the readings to be compared,
they need to be assigned variables. Using the two integer
variables I created, the first two readings are acquired and
compared to determine the difference between them. Over-
writing each variable by getting new readings is not a valid
way of doing this because it would create incorrect compar-
ison results when checking for a rise in water. To solve this
problem, an integer variable is created as a counter and set
to 0, which is followed by an if statement. This if statement
checks the value of the counter, and if it is 0, then a read-
ing is taken from the sensor and the counter is incremented
by 1. From here, a second variable acquires a reading from
the sensor, and the two readings are compared. Since the if
statement only executes one time due to the increased value
of the counter, the first variable no longer gets any readings
from the sensor. This is where the last line of code comes in.
The value of the second variable reading is assigned as the
first variable reading. This eliminates the problem of incor-
rect comparisons by essentially storing the previous reading
in a variable that is used for comparison. The difference
that is calculated from comparing the readings. The user
can change how much the difference has to be. Once the
difference between the readings is great enough, an email is
sent to notify an individual. Otherwise no action is taken
and another reading is acquired. Figure 7 illustrates the
process of the data within the device.

5.3 Testing

The Arduino Yun, YL-38 module, and portable battery are
all fitted into the waterproof container, shown in Figure 8§,
while the YL-69 sensor is located outside to obtain water
readings. Using the Arduino software, the code is compiled
and uploaded to the board. The sensor is then dipped into
a bowl of water by hand, and the depth at which the sensor
is positioned is varied to simulate rising and falling water

Arduino Yun powers on |:> Acquire initial reading
and connects to WiFi from YL-69 sensor

!

Acquire reading from
YL-69 sensor

Send email or not

Compare readings

—

Figure 7: Data flow diagram showing how the device operates.

levels. For testing purposes, a serial monitor is pulled up on
the screen to see the values taken from the sensor. Based
on the values on the monitor and the actions taken by the
Temboo account, one can clearly see how successfully the
device is or not. Through just a few test runs and some
troubleshooting of the code, the device worked perfectly.

Figure 8: Waterproof container that protects the
hardware.

6. FUTURE WORK

The project may be complete but improvements in the sen-
sor and microcontroller could be made. The device could
also benefit from additional add-ons such as a new method of
communication, a way of saving battery power, and another
sensor. Adding these features to the device would greatly
increase its effectiveness as well as increase the market in
which it could be used for.

6.1 Improvements

This device could be improved by implementing it on a big-
ger scale with a bigger sensor. The current sensor’s prongs
are only an inch or two long. So for the device to be used
for detecting rising water levels of large bodies of water,
the sensor would need longer prongs to compensate for the
larger fluctuations of water levels. When dealing with large

areas of water, it would make sense to have multiple sen-
sors monitoring the water levels. In the event of a flood, it
would be expected that all of the sensors would be alerting
the person of authority. If one of the sensors is not detect-
ing flooding, then it is clear that sensor is not functioning
properly and needs to be fixed. When the opposite of that
event happens, problems arise. If there are multiple sensors
in an area and only one of them is reporting flooding, then
it could be possible the device is malfunctioning or there
is actually flooding occurring. Having an architecture that
recognizes which sensors are placed where and which sensors
would report flooding first prevents the occurrence of false
alarms when a device malfunctions.

When collecting water level readings, the code currently only
compares two readings. If a fish were to splash water on the
sensor, this would cause the device to receive a reading that
indicates a flood. To keep this from happening, an array
could be created that collects ten readings in ten seconds,
and then the average of those readings is calculated. Ten
minutes later, another array of the same size could collect
ten new readings and calculate the average of them. The
two averages could then be compared, determining whether
an email needs to be sent. By creating even more arrays, it
makes it possible to store larger amounts of readings. These
averages of the readings could be used to create a simple
graph showing the rise and/or fall of the water level. This
graph could be included in the email alert to provide the re-
ceiver with a simple way of interpreting the change in water
level over x amount of time.

A question that I have not explored myself is, are there
other programmable microcontrollers for a cheaper cost that
maintain the efficiency and simplicity of the Arduino? There
is an abundance of microcontrollers available, therefore it
makes sense to believe there are cheaper options. On the
other hand, if there are other cheaper options, then why
have companies like the IFC not taken advantage of them?
One possible reason is that the cheaper microcontrollers may
not offer the same reliability as their current devices.

6.2 New Add-ons

In the beginning of the paper it was said that the IFC’s de-
vice uses cellular communication instead of WiFi. The good
thing about a cellular connection is that there is less of a
chance of running into the issues of a power outage since
cellular towers have generators. With WiFi, the device re-
lies on power to be supplied to the router it is connected

to. Not all homes have generators so without that power,
the device becomes useless. Although when the router does
have power, the signal strength is always going to provide
a stable connection. Since cellular towers are not all built
close together, the only con of a SIM card is that the signal
strength varies in different areas. Although both forms of
communication have their pros and cons, cellular communi-
cation is the direction I plan to take in the future.

To use a Subscriber Identity Module (SIM) card with the Ar-
duino board, an additional piece of hardware called a GPRS
2.0 shield, shown in Figure 9, that acts as a cell phone is
required. On the front, the black rectangle connected to the
wire is the antenna for the device, and on the back of the
shield there is a slot for a SIM card to be inserted. The only
con of this method of communication is that it raises the to-
tal cost of the device since a SIM card would require money
to be loaded onto it to pay for the text messages sent.

Figure 9: GPRS 2.0 shield that utilizes a SIM card
for text messaging.

If the device is placed in an area where no power source
is available, then this is where the portable battery comes
into play. The only problem with the battery is that it
will eventually have to be recharged. There are a couple
solutions to this problem. Solution 1 would be to use a
WDT (Watchdog Timer). A WDT is a timer that can be
implemented in code to control when the system resets, uses
power save mode, or powers down completely[8]. Using the
power save mode would be beneficial to this device because
it would allow it to acquire a reading from the sensor, send
an email or not, enter power save mode for ten minutes, and
repeat the process. Although the battery would still have to
be recharged, it would not happen near as often. Solution
2 involves the method of self-charging. Again, the IFC uses
this method of recharging the device’s battery through a
solar panel. Solar energy would charge the battery during
the day, while the device runs on the battery power during
the night. The only problem a solar panel could have is if
clouds were in between the panel and the sun. Cloudy days
could prevent the solar panel from receiving enough light to

charge the battery. However, combining solutions 1 and 2
by using a WDT in conjunction with the solar panel solves
all of the potential issues of using a portable power source.
The battery would without a doubt have enough power to
supply the microcontroller with on those cloudy days.

Instead of just this water level sensor, an additional sensors
could be paired with the Arduino to give it multiple uses in
areas. A sensor that would be simple to work with would
be one that detects harmful gases. For example, the device
could be placed in the basement of a house that is built in a
low spot to monitor flooding while it simultaneously moni-
tors the contents of the air for formaldehyde. Formaldehyde
is a gas that can cause irritation of the skin as well as trig-
ger asthma attacks. The harmful gas is also believed to be
a possible carcinogen[9]. Enabling a single device to have
multiple purposes can greatly increase the safety of individ-
uals.

7. CONCLUSIONS

This section is titled "Conclusions” instead of "Conclusion”
because throughout the entirety of this project, there was
not one time where I was not learning something new. Be-
fore I started this project I was not too familiar with the
lower level aspect of the combination of hardware and soft-
ware. | have a much greater understanding of how hardware
components work, and that my knowledge in software is go-
ing to allow me to continue my work with this device.

In the beginning of the paper, I mentioned how non-computer
science students think my field is too complicated for them
to understand. It is in my hopes that the people who read
this paper are able to grasp a better understanding of how
hardware and software work together. Although there are
parts of technology that are quite complex, not everything
with a computer is as confusing as one might think, espe-
cially this device.

Not only does the device I set out to create work, but I
accomplished the main goal of keeping the total cost at a
more than reasonable amount of less than $100. Although
this device has its pros and cons, I strongly believe that it
can be improved to be just as effective as the IFC’s device
at a fraction of the cost. A low-cost device that can monitor
multiple potentially harmful things in all areas of the world
would prove to be extremely beneficial to the health of the
human race. After all, it is the well-being and safety of us
that should ultimately matter most.

8. ACKNOWLEDGMENTS

I would like to thank Garrett York for providing me with the
idea of this device and for sharing his knowledge of Arduino
boards with me. I would like to thank George Crowson as
well for his assistance with the WiFi configuration of the
Arduino Yun. Finally, a special thank you to Charlie Peck
for answering my questions throughout this project.

9. REFERENCES

[1] D. Guha-Sapir, R. Below, and P. Hoyois. (1994)
Em-dat: The cred/ofda international disaster database.
[Online]. Available:
http://emdat.be/disaster_list/index.html

[2] O. Love and T. Gazette. (2014) Sensor to help better
gauge flood threats. [Online]. Available:
http://www.thegazette.com/subject /news/sensor-to-
help-better-gauge-flood-threats-20141009

[3] V. Boonsawat, J. Ekchamanonta, K. Bumrungkhet, and
S. Kittipiyakul, “Xbee wireless sensor networks for
temperature monitoring,” in the second conference on
application research and development (ECTI-CARD
2010), Chon Buri, Thailand, 2010.

[4] W. J. Fleming, “Overview of automotive sensors,”

Sensors Journal, IEEE, vol. 1, no. 4, pp. 296-308, 2001.

Jimbo. (2013) Analog vs. digital. [Online|. Available:

https://learn.sparkfun.com/tutorials/analog-vs-digital

Massimo, David, Tom, and David. (2008) Arduino.

[Online]. Available: https://www.arduino.cc/

T. Temboo. (2015) Arduino yAzn: Temboo comes

preloaded on each arduino yAzn. [Online]. Available:

https://temboo.com/arduino/yun/yun-and-temboo

M. Barr. (2001) Introduction to watchdog timers.

[Online]. Available:

http://www.embedded.com/electronics-blogs/beginner-

s-corner /4023849 /Introduction-to-Watchdog-Timers

D. J. Walke. (2005) Nrdc: Dangerous chemicals in the

home. [Online]. Available:

http://www.nrdc.org/health /home/fchems.asp

[5

6

7

8

[9

