
A Flexible Social Network Visualization

George Crowson
Earlham College

801 National Road West
Richmond, Indiana

ghcrows13@earlham.edu

ABSTRACT
Theres a massive amount of data being generated by indi-
viduals interacting with social networks. Mining this data
and generating a useful visualization of that data is a diffi-
cult task that academic areas such as sociology, anthropol-
ogy, and psychology often face. Additionally, social networks
play an important role in many peoples lives. A flesible so-
cial network visualization can help users answer questions
about their social networks or generalized social networks.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; F.2.1 [Analysis]: Numeri-
cal Algorithms and Problems; H.2 [Information Systems]:
Database Management; H.5.2 [Information Interfaces and
Presentation]: User Interfaces; I.3.8 [Computer Graph-
ics]: Applications; I.5.3 [Pattern Recognition]: Cluster-
ing

Keywords
social network visualization, Twitter, Tumblr, Python, Twit-
terAPI, PyTumblr, data aggregation, PSQL, mesh networks,
web applications, HTML, CSS, Javascript, D3

1. INTRODUCTION
There are a variety of tasks that must be tackled in order
to create a social network visualization. I collect data -
users and posts - from Twitter and Tumblr using Python
libraries to interface with their respective APIs. Data is
coming from multiple sources and so it must be aggregated
into a standardized schema. I store the data in PSQL tables
that are normalized and indexed. I visualize the data as a
mesh network implemented using HTML/CSS/JS and the
D3 visualization library. The color/size of nodes can be
customized by category such as gender, age, and location.
The visualization features dynamic abstraction in that users
are abstracted into groups to facilitate the exploration of the
dataset. This abstraction is controlled by zooming in/out of

the visualization. This project completes all of theses tasks
in an effort to provide a reusable tool.

2. DATA COLLECTION
Many of the social network visualizations I’ve found have fo-
cused on egocentric visualizations of a users email. I believe
this is because email is standardized and easy to collect.
However, these visualizations are egocentric in nature be-
cause they focus on the data of a single user. These datasets
are focused on answering questions about a users personal
social network rather than answering questions about the
users of social networks in general. In contrast Ive attempted
to create a visualization that can handle large datasets so
that more generalized questions can be asked about the users
of social networks.

2.1 Scraping
Not all social network data is easily accessible through APIs.
In these circumstances data must be manually scraped. For
example, forums and discussion boards must be scraped as
they rarely have native APIs. A downside of scraping is
that it can lead to fragile programs that have the risk of
breaking when the social network is updated. A concern of
scraping social networks is that they pay to serve you data
and therefore must be respected. Data scraping on a large
scale can can result in behavior that is very similar to DoS
and/or DDoS attacks. Obviously organizations dont like to
have their servers flooded with requests. Consequently, data
scraping should make steady requests, rather than a flood of
requests, so as to respect the capacity of the organization’s
servers. In general, though, its better to use APIs as the or-
ganization is explicitly defining the interface that they deem
reasonable.

2.2 APIs
I collected data from Twitter and Tumblr using an egocen-
tric algorithm. My algorithm begins with a list of users,
gets the friends of those users, and repeats the process until
a given number of users or a given depth is reached. This
is similar to exploring a tree using a depth-first algorithm.
The number of users/leaves at a given depth increases ex-
ponentially. Users are only explored once, and so if a user
is rediscovered theyre not explored. The posts of users are
collected throughout this process so that they can be sur-
faced in the visualization. Similarly, rather than exploring
users by looking at their friends its possible to explore users
through looking at whom interacts with their posts. In the



future I would like to use post interactions to make an in-
ference about the strength of connections between users.

2.3 Twitter
Twitters API was easy to work with through the TwitterAPI
library for Python. The TwitterAPI library relies heavily
on a single function, request(), that gets data of a particular
type that meets the specifications of the query. This data
is represented as a series of JSON dictionaries. Twitters
API limits how many results are returned at once which
requires the use of pagination to collect all users and/or
tweets. The most inconvenient part about Twitters API
is that it throttles requests. This makes it more difficult
to collect large amounts of data from Twitter. In order to
bypass this issue I run my query, check if the query failed
due to throttling, wait until the throttle resets, and repeat
the query. Twitters API and the TwitterAPI python library
are effective tools for collecting data from Twitter.

2.4 LinkedIn
I originally wanted to include LinkedIn but was unable to
implement their API in a reasonable amount of time. This
led to LinkedIn being cut from the project. In retrospect,
LinkedIn was the oddball of the three services. It offers
social network features, such as friends and posts, but is
substantially different than Twitter and Tumblr in terms of
audience. I chose to replace LinkedIn with Tumblr.

2.5 Tumblr
Tumblrs API was easy to work with through the PyTumblr
library for python. Tumblrs API is very similar to Twitters
API in terms of implementation. However, PyTumblr has a
different philosophy than TwitterAPI because it uses differ-
ent functions to query for different types of data. For exam-
ple, info() returns the authenticated user while blog info()
can get any user. Tumblr is somewhat restricted in that a
users following/followers arent public information. I worked
around this restriction by keeping track of whom interacts
with a given users posts and I treat those interactions as
a sign of friendship. This isnt optimal as post interactions
are a less significant indication of relationship than follow-
ing/follower. Additionally, Tumblrs API restricts the num-
ber of post interactions returned to 50 and doesnt support
pagination for post interactions. Tumblrs API and the Py-
Tumblr library were easy to work with but were more re-
stricted than Twitters API in my experience.

3. DATA AGGREGATION
No single archive or tool captures all our social relations with
others. [3] Focusing on a single social network limits the
kinds of questions that can be asked about users. All social
networks are built to meet different needs. Similarly, users
treat social networks differently and express themselves dif-
ferently on different social networks. Including multiple so-
cial networks in a visualization provides the ability to com-
pare and contrast different social networks.

3.1 Social Network Similarities
Ive found that most features of social networks are analo-
gous and can be translated to a standardized schema. For
example, users and posts have similar functionality across
different social networks. Users have a name, friends, and

posts. Posts have an author, content, replies, likes, and
shares. Due to the similarities between different social net-
works Ive used a standardized schema to make data from
different social networks directly comparable.

3.2 Exceptions
However, all social networks are different, and when these
differences dont fit into the standardized schema they be-
come exceptions. Dealing with exceptions requires decid-
ing on the algorithm to be used for combining data from
various sources. [3] For example, Facebook pages/groups
arent features that exist on Twitter or Tumblr. I could re-
solve this exception by treating Facebook pages as users and
treating Facebook groups as just another form of friendship.
However, forcing these exceptions to fit with the standard-
ized schema makes the data more general and subsequently
harder to understand in visualizations. A better solution for
Facebook groups might be to let users be in groups and only
have that feature apply to Facebook users. Exceptions are
difficult to deal with appropriately given that they can be
ignored, translated to fit into the standardized schema, or
added to the standardized schema.

3.3 IBM’s SONAR API
A good example of aggregating data from multiple social
networks is IBMs SONAR API. The SONAR API uses IBMs
internal social networks to generate friends lists based on
how often users interact. The SONAR API enables users
to determine the weight of different social networks so that
their friends list can more accurately reflect their expec-
tations. Similarly the aggregation algorithm can learn by
asking the people in the network about its correctness. [3]
These are a good ways to give users control over an other-
wise abstract algorithm. However, giving the user too much
control can lead to the user feeling overwhelmed by choice. I
believe that users should have a minimal set of options that
are maximally helpful in meeting their needs. I believe that
IBMs SONAR API is lightweight while still enabling users
the power to customize data aggregation.

4. PERFORMANCE
4.1 Parallelization
Collecting and processing data from social networks is a
highly parallelizable task. One solution, described in ”Par-
allel crawling for online social networks”, is to use a central-
ized queue that delegates tasks to subthreads. [2] When a
subthread is finished processing a user it queries the cen-
tralized queue for the next user. Its possible to increase
performance and reliability by distributing the crawling of
web pages across several agent machines. This solution is
for scraping the pages of forums. However, its important to
note that APIs that implement throttles, such as Twitters
API, dont benefit from performance gains. The only way
to gain performance when an API has throttles is by au-
thenticating subthreads as different users which is against
most APIs terms of service. Tumblrs API, however, has
no throttles and benefits greatly from threading. Thread-
ing provides large performance gains in situations where the
API isnt throttled.

4.2 API Queries



I view API queries as a finite resource and so I tried to make
the most out of them. This involved storing and reusing as
much data as possible. All of my queries request the maxi-
mum amount of records that the API supports. This is im-
portant because APIs keep track of how many queries youve
ran: not the size or complexity of those queries. Similarly, it
makes sense to reuse data from previous queries as it avoids
network latency and redundant queries. For example, when
I need data about a given user I check to see if Ive already
collected data about that user. If so, I reuse the data. If
not, I run a query to get the data. Queries are an impor-
tant resource because waiting for API throttles to reset is
an incredible waste of time.

4.3 Databases
When dealing with large amounts of data the storage and re-
trieval of that data becomes crucial. The structure of social
networks lends itself to normalization and indexing. I nor-
malized my database schema (figure 1) which helps PSQL
access only the data relevant to a given query. I found in-
dexing ID fields to lead to large performance gains because a
subset of fields receive the majority of access. For example,
the average query would be sped up considerably if users
were ordered by their number of friends and how often their
content is viewed or interacted with.

Figure 1: My database schema.

5. VISUALIZATION
5.1 Mesh Networks
Ive used a mesh network for my social network visualization
as its the clearest way to show connections between users
and groups. Indeed, most social network visualizations use
mesh networks. I represent users as nodes and connections
between users as edges between nodes. Nodes are rendered
with the users name or the users profile picture. (figure
2) Nodes are colored based on the selected category. The
color of the users node is determined by their value for that
category. More concretely, if gender is selected a nodes color
will be blue for males, purple for trans, and pink for females.
(figure 3) In the future I would like to implement filters
that enable nodes to be hidden dynamically based on the
values of categories. Mesh networks have afforded me a lot
of freedom as node appearance and positioning are flexible
ways to visualize data.

Figure 2: An example of a mesh network represent-
ing a social network.

Figure 3: An example of nodes being colored by
gender.

5.2 Pie Charts
A particularly flexible thing about mesh networks is that
nodes can be represented as a pie chart. I use this to visu-
alize the composition of users in a group node. (figure 4)
The pie chart’s data can be tied to a selected category. The
composition of groups is likely to convey some form of infor-
mation about the group. For example, perhaps one group is
predominantly male, another group is predominantly female,
and another group is a 50-50 mix. This says a lot about the
dynamics of the groups. An alternative could be a weighted
bar chart beneath the node, but this doubles the number
of objects on screen, and I believe that this is very harmful
to the legibility of the visualization. Consequently, it seems
that pie charts are an effective way to convey percentage-
based information about the composition of groups.

5.3 Animation
Social network visualizations can be animated, and one ex-
ample of this is PostHistory which animates user interactions
throughout time. [5] In the future I would like to implement
some animations. A users node could temporarily expand in
size when they post a status. The connection between users
could be highlighted when a reply occurs. Groups could be
animated to represent the fluidity of the users that partici-
pate in those groups. Similarly, the width of edges between
users could be animated to reflect the strength of the con-
nection between users over time. Viégas mentions how ani-
mation across time helped people interpret the significance
of the underlying data. [5]

5.4 Relationships and Interactions
Its possible for social network visualizations to focus purely
on relationships (Vizster [4] and SONAR [3]) or to include
interactions from those relationships (Fizz [1]). In my vi-
sualization hovering over a user will cause all of that users
interactions will be displayed next to those users and are



Figure 4: Group nodes can be replaced by pie charts
that represent their compositions.

formatted as a timeline. These interactions are useful for
providing context about specific users and their interactions.
I believe that without interactions users would interpret the
visualization as being much more abstract.

6. REDUCING VISUAL COMPLEXITY
6.1 Group Abstraction
At first my visualization was overwhelming due to the size
of the dataset and the resulting density of nodes/edges. 5
Visualizing such large datasets was only manageable with
an equally large amount of abstraction. This abstraction
involved replacing a lot of individual nodes with a single
group node, replacing a lot of group nodes with even larger
group nodes, and repeating the process until there were a few
dozen nodes. 6 For me it seemed natural to make these ab-
stractions based on social groups: clusters of people that are
densely connected. The users are evaluated for the strengths
of their connections and are assigned groups for six differ-
ent layers of abstraction. This metadata is generated by the
server because its too intensive to consider running on the
client. Dynamic abstraction has been the only way for me
to visualize large datasets.

6.2 Group Fragmentation
A caveat of using group abstraction is that a given node
might belong to two or more groups. In these circumstances
a new group can be created between the existing groups to
represent the nodes whom fall into this fragmented catego-
rization. Edges are drawn between this composite node and
the originating groups to indicate the connection.

6.3 Zoom Control
Viégas brings up adaptive zooming which describes the ad-
justment of a map, its contents and the symbolization to
target scale in consequence of a zooming operation. [5] This

Figure 5: Visualizing too many nodes or edges at
once makes visualizations difficult to interpret.

Figure 6: Group nodes can be used to represent the
busy mesh network in figure 5 more legibly.

means that the visualization dynamically responds to the
act of zooming by changing the degree of abstraction for
nodes thatre currently in view. This helps prevent situa-
tions where clusters are so dense and so tight that nodes
end up almost completely on top of each other and names
of people ... become illegible. [5] Similarly, when zoomed
out enough edges between nodes become incomprehensible
and should be hidden. I use zooming as an intuitive way for
users to control what level of group abstraction is used for
the visualization.

7. CONCLUSIONS
Upon reflection I believe this project to be the beginnings
of a very powerful tool. It enables programmers to easily
collect and process data from a host of social networks. Its
relatively easy to mine data for different types of metadata
and to then add that metadata to the data model. Its robust
to change in that adding social networks and/or fields wont
change much about the implementation of the visualization.
Its possible to extend the visualization to have feature parity
with social networks so that users can check their social
media, live, from within the visualization. Along similar
lines, the visualization can be brought to life by animating
posts and user interactions across time. With enough work
and advertising I believe that this visualization is capable of



having a large number of users.

8. ACKNOWLEDGMENTS
I would like to thank Veronica Dow for her significant help
and support. Additionally, my conversations with Mic Jack-
son helped me develop this project and my related thoughts.
Finally, I’m grateful for Charlie Peck as he was a guiding
hand throughout the duration of this project.

9. REFERENCES
[1] Bloom. Fizz. 2011.

[2] e. a. Chau, Duen Horng. Parallel crawling for online
social networks. Proceedings of the 16th international
conference on World Wide Web., 2007.

[3] e. a. Guy, Ido. Harvesting with sonar: the value of
aggregating social network information. Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems., 2008.

[4] J. Heer and D. Boyd. Vizster: Visualizing online social
networks. Information Visualization, 2005.

[5] F. B. Viégas and J. Donath. Social network
visualization: Can we go beyond the graph. 4, 2004.


