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ABSTRACT
The rate of astronomical data collection is increasing and
for the data to be used in scientific analysis, data is required
to be quickly and effectually classified. The purpose of this
work is to implement a linear support vector machine to
discern galaxies from stars. Data from the Sloan digital sky
survey is used for both training and testing data.

Using just a linear classifier, a successful classification rate of
around 70% was achieved with a training set much smaller
than the testing set.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Classifier evaluation

General Terms
Machine Learning, Astronomy

Keywords
Support Vector Machines, Object Classification

1. INTRODUCTION
Astronomy, like other areas of science, is observing a rapid
increase in the quantity of available data. Today, the Chan-
dra X-ray Observatory, the Hubble Space Telescope, the
Sloan Digital Sky Survey, and the Two Micron All Sky Sur-
vey among others, are all rigorously assembling an increasing
colossal archive of data. The Sloan digital sky survey cur-
rently has around 100 TB of raw data and produces around
200GB of data a night while the Large Synoptic Survey Tele-
scope, which is currently under construction and set to start
operations on 2019, is estimated to produce around 30 Ter-
abytes per night [1]. As the progression of technology con-
tinues, this rate of data collection will only increase.

In addition to optical information, where the visible light
from celestial objects is documented, we are receiving in-
formation from a greater range of the electrical spectrum
such as radio, infrared, ultraviolet, x-ray, and gamma ray
information.

The classification of celestial objects was often done by using
the perceived shape of the object, with point sources being
identified as stars and elongated objects as galaxies. This
works well when the objects are bright and readily visible,
however as the brightness decreases, it becomes erroneous
to rely on the shape. For example, objects such as ultra-
compact dwarf galaxies are often misclassified as stars due
to their high mass/light ratio [2, 3].

For such objects, other properties must be used. ColorâĂŞ-
color and colorâĂŞmagnitude diagrams are often used for
this purpose [4]. Color-color diagrams plot the difference of
two magnitudes at different wavelengths, which makes them
independent of distance.

Due to the influx of data outpacing the current ability to
classify it, astronomers are looking for new methods of clas-
sification. One unique way is the âĂIJZooniverseâĂİ, which
is an online crowd sourcing project where around a million
individual users contribute to science and classification. For
example, one of their projects, âĂIJgalaxy zooâĂİ users are
shown an image of a galaxy and then answer questions to
determine its classification. However, data collection rate is
only increasing and becoming more complex. An automated
system for classifying objects would allow us to double check
current classifications and to classify future data.

An automated algorithm should be able to take into account



the multiple Observations in each of the different recorded
wavelengths. Each wavelengths carries important informa-
tion about the properties of the objects. To obtain the most
reliable classification, instead of using a predefined set of
features, an automated algorithm should learn the most sig-
nificant features among the large number of measured ones
using a training set, and use the features for the classifica-
tion task.

One solution to this is a Neural Network. Neural networks
do not require any specific knowledge of the data to be used.
Neural networks have been shown to be capable of extract-
ing reliable information and patterns from large amounts of
data utilizing any amount of dimensions required. They also
begun to make strides is astronomy in object detection [5] as
well as star/galaxy classification using raw image data and
the brightness of pixels to determine galaxy morphology [6].

My goal is to implement a support vector machine(SVM) al-
gorithm that can automatically classify objects once trained
on a data set. Like neural networks, support vector machine
can utilize data contain any number of dimensions, allowing
full use of the available data. They are a newer machine
learning model and provide a alternative to neural networks.
To train a support vector machine, we give it a series of pos-
itive and negative data points, and it separates the data to
the best of its ability using a hyper plane. The classification
of objects in astronomy is one of the most basic problems,
and SVMs show a promising classification strategy.

2. SUPPORT VECTOR MACHINES
The main goal of a SVM is to calculate the most optimal
separating decision line, plane, or hyper plane separating
two sets of any number dimensional data points. A train-
ing data set, consisting of positive and negative instances of
the object that we want to detect, is used to provide the
SVM with the data points to separate. The SVM calculates
the hyper plane between the classes of objects by maximiz-
ing the margin, or the distance, between the two classes of
data. In addition to linear classifiers, SVMs can generate
non-linear classifiers through mapping data points to higher
dimensions. These groups of algorithms are called kernel
methods. Due to time constraints only a linear classifier
was implemented in this paper.

2.1 Applications
SVMs have been growing in popularity in the recent years.
SVMs are often used for handwriting recognition [8], voice
recognition [9, 10], and have begun making strides in the
medical field in areas such as cancer tissue classification [11]
and diagnosis [12]. In astronomy, SVMs have been used to
identify supernova in astronomical imagery [13] and quantify
the morphologies of galaxies based on a dozen of its prop-
erties, such as luminosity and redshift [14]. Recently Svms
have not only been used to classify objects but also to pre-
dict the characteristics of specific objects. For example, the
amount of redshift [15]. SVMs offer a new technique that
may be widely used in many different areas of astronomy.

The SVM algorithm was implemented to build a linear clas-
sifier for photometric data to predict whether or not a source
is a star or galaxy.

Figure 1: [7] An SVM separates the two classes of
data by maximizing the margin or distance between
the two training data sets. A new unknown data
point can be classified depending on what side of
the classifying line that it lands on.

3. DATA
Data from the Sloan Digital Sky Survey was used due to
their comprehensive documentation and of their wealth of
data. Apendex A shows the spame of the data was was used
plotted on a graph.

The SDSS telescope is a 2.5 m f/5 modified RitcheyâĂŞChrÃl’-
tien wide-field altitude-azimuth telescope located at the Apache
Point Observatory (APO) at Sunspot, New Mexico. The
telescope images the sky by scanning along great circles
at the sidereal rate. The telescope is also equipped with
two double fiber-fed spectrographs, permanently mounted
on the image rotator. Imaging is done in pristine observing
conditions (photometric sky, image size FWHM) and spec-
troscopy is done during less ideal conditions. All observing
will be done in moonless sky. Besides the 2.5 m telescope,
the SDSS makes use of three subsidiary instruments at the
site. The photometric telescope (PT) is a 0.5 m telescope
equipped with a CCD camera and the SDSS filter set. Its
task is to calibrate the photometry. [16]

The five filters in the imaging array of the camera, u, g,
r, i, and z, (rougly standing for ultraviolet, green, red, in-
frared, and z stands for nothing) have effective wavelengths,
in Angstroms, of 3550, 4770, 6230, 7620, and 9130 respec-
tively. [17].

4. RESULTS
A linear SVM algorithm was implemented and applied to
training and testing data. When predicting 45,000 data
points, with a low quantity of training data (around 250
data points), the program shows around 50% success rate,
no better then guessing. However, increasing of the amount
available training data, subsequently increases the successful



prediction rate up to around 70% at 2000 data points.
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Figure 2: The implementation program results when
used on 45,000 test data points with different num-
ber of training data points (250-4,000 points at 250
point intervals).

This shows that a relatively small number of training exam-
ples can used to predict the classification of a vastly larger
data set.

5. CONCLUSIONS
The availability of data is increasing. To best utilize this
new influx of data, a efficient method of processing and cat-
egorization is required. The results of this study paper show
that it is possible in the foreseeable future to categorize as-
tronomical data using SVMs.
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APPENDIX
A. PLOT OF DATA



2 1 0 1 2 3 4 5 6

u - i

0.5

0.0

0.5

1.0

1.5

2.0

g 
- r

2 1 0 1 2 3 4 5 6

u - i

0.5

0.0

0.5

1.0

1.5

2.0

g 
- r

2 1 0 1 2 3 4 5 6

u - i

0.5

0.0

0.5

1.0

1.5

2.0

g 
- r

2 1 0 1 2 3 4 5 6

u - r

1.0

0.5

0.0

0.5

1.0

1.5

2.0

i -
 z

2 1 0 1 2 3 4 5 6

u - r

1.0

0.5

0.0

0.5

1.0

1.5

2.0

i -
 z

2 1 0 1 2 3 4 5 6

u - r

1.0

0.5

0.0

0.5

1.0

1.5

2.0

i -
 z

3 2 1 0 1 2 3 4 5

u - g

1.0

0.5

0.0

0.5

1.0

1.5

2.0

r -
 i

3 2 1 0 1 2 3 4 5

u - g

1.0

0.5

0.0

0.5

1.0

1.5

2.0

r -
 i

3 2 1 0 1 2 3 4 5

u - g

1.0

0.5

0.0

0.5

1.0

1.5

2.0

r -
 i

Figure 3: A few color-color plots describing the data set that was obtained from Sloan. The graph on the
left show the wavelength differences of stars and the middle graphs show galaxies. The right are the previous
graphs overlayed. The data does not look linearly separable, and thus it would be difficult for a linear
classifier to show a high success rate for such data. However, it look separable enough to be better than
random guessing. The graphs are plotted with python’s pyplot package.


