
Open-Source Gesture Recognition for Virtual Orchestra
Conducting Using the Kinect

Edward Ly
Earlham College

801 National Road West
Richmond, Indiana 47374
esly14@earlham.edu

ABSTRACT
Developing a virtual orchestra conducting application has
been a difficult problem in computer music research in part
due to the difficulties faced in gesture recognition research.
Choosing the right hardware for the job is no easy task, and
the amount of open-source resources available can wildly
vary between each device as well. The Microsoft Kinect is
one such recent gaming device that has a great amount of
potential to make live virtual conducting possible. However,
the scarcity of open-source libraries for the Kinect, especially
gesture recognition libraries, makes open-source applications
for the Kinect more difficult to develop than it should be.
Therefore, we developed “Kinect Konductor,” a virtual con-
ductor application for the Kinect for Windows v1 that is
dependent on nothing but open-source, cross-platform li-
braries. The popular freenect library extracts depth im-
ages from the Kinect, while a library called XKin extracts
the hand image and classifies the gesture being performed.
We then use the hand’s velocity and acceleration to detect
beats, and then trigger musical notes via the MIDI inter-
face using the FluidSynth library. With these algorithms,
we were able to detect beats with 97.8% accuracy and play
music with minimal latency.

Keywords
beat pattern gestures, beat tracking, conducting gestures,
gesture recognition, music conducting

1. INTRODUCTION
The idea that one could conduct a virtual orchestra is

nothing new. Indeed, as early as the debut of the Buchla
Lightning in 1991, the possibility has been ever present, but
the limits of existing technology make such a possibility im-
practical in a mass setting. Nevertheless, the problem of
virtual conducting in computer music research still contains
plenty of room for further development. While there have
been a number of efforts made in this realm using a wide
variety of available hardware, there is yet to be a virtual

ACM ISBN 978-1-4503-2138-9.

DOI: 10.475/123 4

conductor that is powerful enough to be suitable for live per-
formance, whether it be in a concert hall or in a recording
studio. The Microsoft Kinect for Xbox 360, which debuted
in 2010, is one recent piece of hardware that presented it-
self with some potential for finally addressing this problem,
with the OpenKinect community in particular making open-
source development for the Kinect possible. The motion
tracking capabilities of the Kinect in particular provide an
straightforward way to extract the necessary data for vir-
tual conducting applications to function. Moreover, with a
later re-release for Windows computers called the Kinect for
Windows in 2012 (hereafter referred to as “Kinect v1”), we
believe this device paves the way forward for further devel-
opment into this research problem.

However, this does not negate the fact that the device can
present itself with issues for open-source software developers.
For one, the freenect library developed by OpenKinect com-
munity,1 along with similar libraries such as OpenNI, could
work only with the Kinect v1. As it turns out, Microsoft
released a newer model of the Kinect called the Kinect for
Xbox One in 2013, which would later be released for Win-
dows computers as the Kinect for Windows v2 in 2014 (here-
after referred to as “Kinect v2”). Even though the Kinect
v2 provides, among other things, higher video resolution, a
wider field of view, and better motion tracking compared to
that of the Kinect v1, features that would be attractive to
researchers and developers, the data that Kinect v2 trans-
mits is no longer in a format that freenect recognizes. Along
with the fact that the Kinect v1 was discontinued earlier this
year, it is no wonder that open-source development around
the Kinect has become stagnant as well.

Moreover, open-source libraries that are able to perform
the gesture recognition needed to detect beats are few and
far between. The OpenNI framework and the NITE middle-
ware provided one possible solution for this task until around
2013, when Apple bought PrimeSense, the company devel-
oping the OpenNI framework. In the following year, the
official OpenNI website2 was shut down, and many other
associated libraries, including NITE, are no longer available
for download. While the OpenNI 2 binaries and source code
are still currently available,3 NITE is not. For this reason,
an open-source alternative for OpenNI and NITE must be
established.

In the next section, we highlight and compare several pa-

1https://openkinect.org/wiki/Main_Page
2http://www.openni.org/
3https://github.com/occipital/openni2 for the source
and http://structure.io/openni for the binaries

10.475/123_4
https://openkinect.org/wiki/Main_Page
http://www.openni.org/
https://github.com/occipital/openni2
http://structure.io/openni

pers detailing the different implementations that have been
attempted while listing some of the benefits and drawbacks
of each system. Afterwards, we propose a new implementa-
tion that addresses some of the concerns that have been
raised by using one possible alternative for OpenNI and
NITE, and then test the performance of this system by mea-
suring its accuracy and latency.

2. PREVIOUS RESEARCH

2.1 Earlier Hardware
In 2006, Lee et al. used modified Buchla Lightning II ba-

tons to create a system that controls the tempo, volume,
and instrumental emphasis of an orchestral audio recording
[4]. Additional control of the playback speed of the accom-
panying orchestral video recording has been implemented as
well. The gesture recognition itself uses a framework called
Conducting Gesture Analysis (CONGA) to detect and track
beats, while a variation of a phase vocoder algorithm with
multi-resolution peak-picking is used to render real-time au-
dio playback. While video control will likely be outside the
scope of our research, volume control and instrumental em-
phasis can provide an added sense of realism on top of what
the Kinect already provides. In the ten years since the paper
was published, however, the Buchla Lightning has been dis-
continued, making the CONGA framework obsolete as well.
In addition, the framework itself, while touting a recognition
rate of close to 100 percent, has a latency described as “ac-
ceptable for non-professionals, [but] professionals will find
the latency much more disturbing” [3]. Indeed, the system
has made only one public appearance in a children’s museum
in 2006.

In 2012, Han et al. developed their own virtual conduc-
tor system that relied on ultrasound to gather 3D positional
data [2]. Hidden Markov models were implemented to pro-
cess the data and recognize the gestures that would then
control tempo, volume, as well as instrumental emphasis.
Compared to the Kinect, their model is more simplistic in
that the computer only has to recognize the position at one
point on a baton rather than at multiple points on the body.
We hypothesize that this may reduce CPU load significantly,
allowing the system to be accessible to more consumer hard-
ware. However, there is no mention of the amount of latency
that is involved at any stage in the system when the gesture
recognition is touted to be reliable with about 95 percent ac-
curacy. Further research will need to determine the amount
of latency of this system and whether or not this system
remains viable for use in a live performance.

In 2014, Pellegrini et al. proposed yet another gesture
recognition system using RGB/depth cameras, but they use
this system for the specific purpose of soundpainting, com-
posing music through gestures in either live or studio envi-
ronments [6]. Hidden Markov models are also used here to
detect a custom set of gestures and to trigger a variety of
different musical events. Gesture recognition for the purpose
of creating custom virtual instruments is a problem in com-
puter music research that bears a large resemblance to the
problem of conducting a virtual orchestra, as both attempt
to manipulate sound in some shape or form. However, when
a song is already predetermined, such as in a live orches-
tral performance, being able to detect beats is crucial for a
system to be successful.

2.2 Microsoft Kinect
One of the earliest known uses of the Kinect for the pur-

pose of virtual conducting was in 2014, when Sarasúa and
Guaus developed and tested a computer’s beat-detection ca-
pabilities using the Kinect [7]. The application was built
with the ofxOpenNI module,4 a wrapper around OpenNI
as well as NITE and the SensorKinect module. Human
participants were also involved to contribute to the com-
puter’s learning capabilities, even though human error and
time deviations had to be taken into consideration. This
approach is especially useful as a starting point given that
the beat-detection algorithm is about as simple as calculat-
ing the current amount of vertical acceleration and finding
local minima or maxima. Their application, however, only
serves to test the effectiveness of the algorithm and not yet
have the music react to the change in tempo given by the
live placement of beats. Our project aims at the very least
to include the ability for the music to react to said beats.

The following year, Graham-Knight and Tzanetakis use
the Kinect for yet another purpose, namely for creating
touchless musical instruments for people with disabilities [1].
Here, the positional data from the Kinect is sent to the vi-
sual programming language Max/MSP through the Open
Sound Control (OSC) Protocol for analysis and playback.
While the system does react to the gestures being made,
the application usually requires more than one attempt for
the gesture to be recognized. Moreover, a bigger limiting
factor of this system is the 857 ms average latency, which
is too large to be practical for live performances. It is un-
clear which part of the system contributes the most to la-
tency, whether it be the Max/MSP language or the Kinect
itself. Nevertheless, our project aims to develop an applica-
tion with a latency small enough that both the performers
and the audience would not notice.

3. PROGRAM DESIGN
We developed “Kinect Konductor,” a virtual conductor

application for the Kinect v1 that is dependent on noth-
ing but open-source, cross-platform libraries. The overall
framework of the flow of data in our application is shown in
Figure 1. As of the writing of this paper, the source code
repository for our application is hosted both on GitHub5

and on GitLab.6

3.1 Reading Data from the Kinect
We use the libfreenect library to extract the depth images

from the Kinect. From there, the XKin library,7 which was
developed by Pedersoli et al. [5], uses these depth images to
track the location of the hand and classify the current ges-
ture being performed. Just as the libfreenect library serves
as a replacement to OpenNI, the XKin library serves as a
replacement to NITE.

To visually see the hand position tracking in action as
well as provide a simple GUI for the user, we took advan-
tage of the high-level GUI interface and image processing
capabilities of OpenCV.8 For testing purposes, the XKin li-

4https://github.com/gameoverhack/ofxOpenNI
5https://github.com/edward-ly/kinect-konductor
6https://gitlab.cluster.earlham.edu/seniors/
edward1617
7https://github.com/fpeder/XKin
8http://opencv.org/

https://github.com/gameoverhack/ofxOpenNI
https://github.com/edward-ly/kinect-konductor
https://gitlab.cluster.earlham.edu/seniors/edward1617
https://gitlab.cluster.earlham.edu/seniors/edward1617
https://github.com/fpeder/XKin
http://opencv.org/

Figure 1: Overview of the flow of data in our appli-
cation.

Figure 2: A screenshot of the GUI of the application.

brary provides tools for testing the detection of the hand
by drawing the contour of the hand onto the screen. In our
application, however, we simply extract the single point po-
sition of the hand and then draw the motion of the hand
using the last few positions read. We implement a modi-
fied queue to store said points, as well as the time at which
those points were recorded. Once the queue is filled to ca-
pacity, the oldest point is automatically popped before the
next point is added to the queue. Figure 2 shows a screen-
shot of the GUI with the contour and motion of the hand
inside the window.

This stream of positional data is also what allows us to
detect beats. However, we opted not to use the functions
provided by XKin that allowed us to track and classify ges-
tures. A major drawback of this feature is the fact that the
library needs to know when a gesture starts and ends. In this
case, they are indicated by the closing and opening of the
hand, respectively. This is truly inconvenient for orchestra
conductors, as opening and closing the hand every beat is
not only tiring for the conductor, but also not a typical part
of orchestra conducting in general. Instead, we simply used

XKin’s ability to track the position of the hand and then de-
tect beats based solely on the velocity and acceleration of the
hand. Since this method does not track any specific motion
in particular, both left-handed and right-handed conductors
can freely use this application.

3.2 Producing Sound
After a beat has been detected, there are several direc-

tions one could take in terms of audio output. We first di-
rectly generated and played a simple sawtooth wave via the
PortAudio library.9 While this provides a simple solution
for producing monophonic music, it introduces two major
problems. The first is that the application goes to sleep in
order to play any sound at all, halting any further input
from the Kinect and “freezing” the GUI for the duration of
the sound. The second is that because the application goes
to sleep, finding the difference in time between two consecu-
tive beats, and hence the tempo, does not take into account
the duration of the sound while it is playing, so the tempo
reading would be inaccurate as a result.

Due of the above issues, we then replaced PortAudio with
FluidSynth,10 which allowed us to send MIDI note messages
to an internal synthesizer and sequencer for playback. This
solution not only alleviates both problems found from using
the PortAudio library, but provides a framework for playing
any sound or combination of sounds imaginable and at any
point in time. Due to this, our application now allows for
the ability of the user to conduct music of any genre as well.

Each time the music reaches a certain beat, we send some
set of MIDI messages to the sequencer. This sequencer main-
tains its own clock by counting “ticks,” and increments the
count by one after some time has passed. By default, each
tick is one millisecond apart. It can then schedule these
MIDI messages to trigger at a certain time after some num-
ber of ticks have passed. Some messages may occur pre-
cisely on the beat, so those messages are immediately sent to
the synthesizer for processing and playback. Some messages
may want to occur, say, an eighth note after the current
beat, or about halfway in between the current beat and the
next beat. In that case, the sequencer keeps the messages for
some specified duration, usually before the next beat has ar-
rived, before releasing them to the synthesizer for playback.
However, the duration between any two consecutive beats
may vary wildly, whether it be due to flawed beat detection
or to artistic creativity. For safety and simplicity, we then
take the average time over the past five beats in order to
make the tempo more stable.

As for specifying the messages themselves, and hence the
music, such information is usually stored in a separate file,
typically a MIDI file. A MIDI file, among other things,
consists of a series of “note on” and “note off” messages.
Each of these messages is also associated with a number
indicating when it is triggered, in milliseconds after the start
of the music. A MIDI“note on”message consists of a channel
number, a note number, and a velocity value, telling us what
instrument to play, which note to play, and at what volume,
respectively. A “note off” message is the same as a “note on”
message, except that the velocity value is always set to 0.
For our application, the two variables that remain constant
are the channel and note numbers. The timing and velocity
of each note, however, are determined in real-time by each

9http://portaudio.com/
10http://www.fluidsynth.org/

http://portaudio.com/
http://www.fluidsynth.org/

gesture read by the Kinect. A MIDI file alone, however,
may not be able to tell us on which beats a certain note
starts and stops. Therefore, we used our own CSV files in
a custom format instead of MIDI files, replacing millisecond
timing with beat numbers and removing the velocity values
altogether.

MIDI note messages alone, however, still do not tell us
which instruments map, or connect, to which channels, as
one could change this mapping at any time via program
changes to load the desired instruments to play. Further-
more, these instruments are not embedded into any of the
messages themselves, but rather loaded into the application
from SoundFont files, which includes the information needed
for a synthesizer to produce various sounds for the various
instruments they contain. Therefore, when running the ap-
plication, one must also specify the SoundFont file to use as
well as the mapping of each channel to the desired instru-
ment. SoundFont files that conform to the General MIDI
standard, such as the Fluid (R3) General MIDI SoundFont
in Linux, are generally enough to produce music of almost
any genre, including orchestral music.

3.3 Playing Music
A CSV file that our application can read must have a spe-

cific set of numbers separated by whitespace in order to play
any music at all. These numbers store all of the program
changes and all of the note messages that the MIDI protocol
needs in order to play music. The first line of the file consists
of three numbers, which tell the application how many pro-
gram changes and how many note messages there are in the
music, as well as the PPQN (pulses per quarter note) value
of the music, in that order. The PPQN value subdivides
each beat into smaller units of time, usually called pulses or
ticks, so that we can schedule MIDI notes to start and stop
at a certain tick rather than just at a certain beat.

Next, the program changes are listed as pairs of num-
bers, specifying the MIDI channel number to change fol-
lowed by the program number of the instrument specified
by the SoundFont file. As MIDI hardware supports up to 16
channels, the acceptable values for the channel number range
from 0 to 15. Similarly, the General MIDI specifications de-
fine 128 possible instruments, so the program number can
range from 0 to 127. For an example, in our ensemble.csv

file included with the application, we program 13 orchestral
instruments into the first 14 channels, keeping them in the
order that they are listed in a typical orchestra score. The
list of needed program changes and their corresponding in-
struments is summarized in Table 1. Note that channel 9 is
reserved for percussion instruments, so a manual program
change in that channel is not needed. In addition, not all
instruments for which we set program changes are required
to be used in the music. A piece for woodwind quintet, for
example, only uses the first five channels while the remain-
ing channels can be left alone without harm, which can be
seen on our woodwind quintet rendition of Beethoven’s“Ode
to Joy” in the ensemble.csv music file.

Finally, the note messages are listed as sets of five numbers
containing the following information in order.

• beat number

• number of ticks after the current beat

• channel number

Channel No. Program No. Instrument

0 73 Flute
1 68 Oboe
2 71 Clarinet
3 70 Bassoon
4 60 French Horn
5 56 Trumpet
6 57 Trombone
7 58 Tuba
8 47 Timpani
9 (none) Percussion
10 40 Violin
11 41 Viola
12 42 Cello
13 43 Double Bass
14 (none) (available)
15 (none) (available)

Table 1: List of Program Changes and Correspond-
ing Instruments for Playing an Orchestra.

• key/note number

• note on/off indicator (1 for “on” or 0 for “off”)

It is required that each message be sorted by increasing
beat number (and then preferably by increasing tick count
too) as each MIDI message will be read and scheduled in the
same order as in the file. One must also be careful that the
actual number of note messages in the file does not exceed
the message count indicated at the start of the file either.
Once our application has finished reading all of the notes
in the music, we simply reset the music by turning off any
remaining notes left on and send our beat counter back to
the start of the music to be played again.

4. RESULTS
We base the performance of our virtual conductor system

on two metrics: accuracy and latency. In our case, we de-
fine “accuracy” to mean how well the beats detected by the
application match up with the conductor’s intended beats.
Quantitatively, we can express accuracy as a percentage us-
ing the following expression:

b− t

b + f
× 100%,

where b expresses the number of beats elapsed in the music,
while t and f express the number of true negatives and false
positives, respectively, over the elapsed period. Here, a true
negative is when a beat gesture is performed, but the appli-
cation does not recognize it as a beat, while a false positive
is when the application detects a beat that is not actually
performed.

In our testing, we played our version of “Ode to Joy”,
which is 64 beats long, 32 times for a total duration of 2,048
beats. Half of the time was given to conducting with the left
hand and half with the right hand, and we varied the amount
of movement in every single gesture. The t and f values for
every single performance, as well as the total and average
values, are listed in Table 2. Since we encountered 7 true
negatives and 39 false positives in that entire period, this
gives our application an average accuracy of approximately

Left Hand Right Hand
t f # t f

1 0 0 1 0 3
2 0 2 2 0 2
3 0 1 3 0 1
4 0 0 4 1 2
5 0 1 5 0 1
6 0 2 6 0 2
7 0 1 7 0 0
8 1 1 8 1 0
9 0 1 9 0 1
10 0 1 10 0 2
11 0 0 11 1 2
12 1 1 12 0 1
13 1 1 13 0 3
14 0 2 14 0 1
15 0 0 15 0 1
16 0 2 16 1 1

Total 3 16 Total 4 23
Avg. 0.19 1.00 Avg. 0.25 1.44

Table 2: t and f Values for Each Performance of
“Ode to Joy”.

97.8 percent. While this percentage may seem satisfactory
at first, in actuality, this means that on average, there will
be at least one false positive or true negative every 48 beats,
or 12 measures in common time. Considering the fact that
the length of most music around the world exceeds well over
48 beats, making even just one mistake over the course of a
song would prove to be disastrous for a live conductor. Even
in our testing, we were only able to record five mistake-free
performances (both t and f equal 0) out of 32 tries, or 15.6
percent of the time, which are not great chances to take into
a live performance.

While we should strive for 100 percent accuracy to main-
tain control of the music, minimizing latency is still just
as important. Here, we define “latency” to mean the time it
takes to play a note from the moment the corresponding ges-
ture is performed. Admittedly, it is difficult to measure this
latency with some level of precision, but over the course of
development and testing, we observed that the latency was
never large enough to be noticeable. Due to this character-
istic, our application has better latency than most virtual
conductor systems before it.

5. CONCLUSION AND FUTURE WORK
While our application performs well in terms of latency,

a number of improvements can still be made to better the
accuracy of our application as well as the algorithms im-
plemented to process data at each step. As previously men-
tioned, the XKin library has plenty of room for improvement
in two major ways. The first is in the hand detection algo-
rithm, as there are times when other nearby objects or even
the walls of a small room are mistaken to be part of the hand
if they are in the same depth plane as the hand. Even with a
removal of objects and a bigger room, however, other parts
of our body, most commonly the arm, can still be mistaken
as part of the hand as well. The second is that the provided
method for learning the start and end of a gesture is not
suitable for all applications, and does not take into account

gestures based on timing. We believe that further research
and development for this library should focus on both of
these areas, and that improving on these areas would surely
lead to better accuracy as a result.

Aside from the XKin library, another improvement that
can be made in our application is in our beat detection algo-
rithm, as the current method for calculating velocity and ac-
celeration is simplistic but crude. While calculating only two
velocity values and one acceleration value each frame could
still suffice, a large difference in volume between two consec-
utive beats can be problematic if the acceleration value is
not precise. A more robust algorithm would take the entire
path of the hand into consideration while also self-correcting
any stray points should the hand contour at any given frame
ever produce unexpected results. In addition, our applica-
tion has only been compiled and tested under Ubuntu Linux
14.04 LTS, but in the long run, the cross-platform nature of
all libraries used should allow for future work to add com-
patibility for Windows and Mac computers as well.

Another issue of our application is not from within the
application itself, but rather from the CSV files that the
application reads. When composing a new song or adapting
an existing song, keeping track of every single MIDI note
message in the music can be a daunting task, especially as
the count gets larger with each new instrument and each
new beat of the music. Furthermore, even though our CSV
files have a similar structure to that of actual MIDI files,
there is not yet any way to adapt existing music from MIDI
files into CSV files. For this reason, a tool that can convert
between these two formats can help reduce much of the time
spent copying music for conducting.

In the end, we developed an open-source application that
allows the user to conduct not just orchestral music, but
any genre of music one desires. As long as the music can
conform to whatever sound font one chooses to use, one can
compose and playback music using our software. Although
the Kinect for Windows v1 may no longer be in production,
the research using this device for a variety of applications
has not. If a similar device with better hardware were to be
released in the future, that would only make the idea of a
mass virtual concert one step closer to reality.

6. ACKNOWLEDGMENTS
I am grateful to my co-advisors, Forrest Tobey of the Mu-

sic Department and Charlie Peck of the Computer Science
Department, for their support for this project as well as
their advice that helped shape the scope and direction of
this research project. In addition, Xunfei Jiang of the Com-
puter Science Department and Sierra Newby-Smith of the
Earlham College Writing Center graciously provided feed-
back and help during the writing process of this paper. I
am also grateful to Fabrizio Pedersoli [5] for developing the
XKin library and providing the necessary tools to make our
application a reality.

7. REFERENCES
[1] K. Graham-Knight and G. Tzanetakis. Adaptive music

technology using the kinect. In Proceedings of the 8th
ACM International Conference on PErvasive
Technologies Related to Assistive Environments,
PETRA ’15, pages 32:1–32:4, New York, NY, USA,
2015. ACM.

[2] S. Han, J.-B. Kim, and J. D. Kim. Follow-me!:
Conducting a virtual concert. In Adjunct Proceedings of
the 25th Annual ACM Symposium on User Interface
Software and Technology, UIST Adjunct Proceedings
’12, pages 65–66, New York, NY, USA, 2012. ACM.

[3] E. Lee, I. Grüll, H. Kiel, and J. Borchers. Conga: A
framework for adaptive conducting gesture analysis. In
Proceedings of the 2006 Conference on New Interfaces
for Musical Expression, NIME ’06, pages 260–265,
Paris, France, France, 2006. IRCAM — Centre
Pompidou.

[4] E. Lee, H. Kiel, S. Dedenbach, I. Grüll, T. Karrer,
M. Wolf, and J. Borchers. isymphony: An adaptive
interactive orchestral conducting system for digital
audio and video streams. In CHI ’06 Extended Abstracts
on Human Factors in Computing Systems, CHI EA ’06,
pages 259–262, New York, NY, USA, 2006. ACM.

[5] F. Pedersoli, N. Adami, S. Benini, and R. Leonardi.
Xkin - extendable hand pose and gesture recognition
library for kinect. In Proceedings of the 20th ACM
International Conference on Multimedia, MM ’12,
pages 1465–1468, New York, NY, USA, 2012. ACM.

[6] T. Pellegrini, P. Guyot, B. Angles, C. Mollaret, and
C. Mangou. Towards soundpainting gesture recognition.
In Proceedings of the 9th Audio Mostly: A Conference
on Interaction With Sound, AM ’14, pages 18:1–18:6,
New York, NY, USA, 2014. ACM.

[7] A. Sarasúa and E. Guaus. Beat tracking from
conducting gestural data: A multi-subject study. In
Proceedings of the 2014 International Workshop on
Movement and Computing, MOCO ’14, pages
118:118–118:123, New York, NY, USA, 2014. ACM.

	Introduction
	Previous Research
	Earlier Hardware
	Microsoft Kinect

	Program Design
	Reading Data from the Kinect
	Producing Sound
	Playing Music

	Results
	Conclusion and Future Work
	Acknowledgments
	References

