
Robyn: A Natural Language Interface to Database System
for Medicine

Ashutosh Rai
Earlham College

801 National Rd W
Richmond, IN, 47374

arai13@earlham.edu

ABSTRACT
Found in various platforms such as smartphones, comput-
ers, web platforms and popular commercial software, nat-
ural language interface to database (NLIDB) systems are
ubiquitous in today’s world. Despite the rapid growth of
the field, the limited availability of resources to learn about
building such systems creates a high entry barrier. Addition-
ally, scarcity of a reliable NLIDB system that is dedicated
to medical health, which is a topic of uttermost importance,
persists as well. Robyn is a web application that attempts
to solve both these issues. It is built with easily accessible
software tools and architecture. Robyn uses AIML as the
NLP engine, SQLite as the database engine, and Python
to put all the components together as well as to provide
the interface for the users. Bottle, a micro web-framework
written in Python, is used to host Robyn on the server side
while HTML/CSS and JavaScript is used for Robyn’s web
interface.

Keywords
Natural Language Interface to Database; Natural Language
Processing; AIML

1. INTRODUCTION
A natural language interface to database (NLIDB) is a

system that allows the user to access information stored in
a database by typing requests expressed in some natural
language (e.g. English)[1]. It allows technical actions to be
activated without the rigidity of technical sentences and syn-
taxes, which is replaced essentially by a barrierless natural
conversation. Modern Intelligent Personal Assistants (IPA)
like Siri, Cortana and Google Now could be considered some
popular instances of such a system. However, these are gen-
eral purpose programs that complete tasks and answer ques-
tions related to a range of fields rather than focusing on a
particular field. This paper will present Robyn, an NLIDB
system with medicine as the domain of knowledge.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WOODSTOCK ’97 El Paso, Texas USA
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

While Intelligent Personal Assistants (IPA) and chatbots
were exciting, new, and relatively unfamiliar phenomena a
decade ago, they have since become a household tool used
in everyday life. These tools can be used to accomplish
a wide array of tasks such as checking the weather, book-
ing movie tickets, sending messages and completing financial
transactions. The question may then arise: what is the pur-
pose of building an NLIDB system that has a narrow focus
like Robyn when other systems like Siri can accomplish a
plethora of tasks along with answering questions, includ-
ing the ones related to the narrower knowledge domain of
focused NLIDBs itself? The answer lies in the question it-
self. While both could answer the same question - “What
are the symptoms of Tuberculosis?”, the difference would lie
in the quality of answers that would be returned. Whereas
a general purpose IPA would query the question in Google
and then return the search results, a system such as Robyn
would be able to provide high quality and reliable answers
that would not require the user to filter the search results to
find the answer. Accessibility, efficiency and reliability are
key.

Python, AIML and SQLite were primarily used to build
Robyn. AIML (Artificial Intelligence Markup Language) is
an XML-compliant language used for creating natural lan-
guage software agents. It was used to handle the natural
language processing for the interaction. A SQLite backend
was used for the database, while Python was used to put
all the tools together, provide an interface and handle the
queries. Various designs for natural language processing,
storing the database, handling queries and putting together
the different tools were explored before a hierarchical pat-
tern based design was implemented. Python handled the
queries, setting up the statements, communicating with the
SQLite database and then returning the results to the user.
Limited context is maintained as well, using AIML to store
the topic of the current conversation (e.g. which disease).
Bottle was used as the web framework to host Robyn on the
server-side.

This paper discusses how Robyn was built, going from a
bigger picture of NLIDBs to the very specific details of the
tools and algorithms used for Robyn. In addition to ex-
ploring NLIDBs, including their history, general techniques
and architecture of Robyn, this paper also presents the im-
plementation of the software and the testing of Robyn. To
accomplish these goals, several aspects of the system are
examined in the paper. Section 2 presents several related
work that influenced Robyn and the architecture, while sec-
tion 3 and 4 analyze the design and implementation details

Figure 1: General workflow for NLIDB systems

of Robyn. Section 5 discusses results of where Robyn stands
currently and section 6 finally closes with a conclusion and
the identified future goals.

2. RELATED WORK
The late sixties and early seventies saw natural language

interface to database systems appear on the scene for the
first time[1]. These systems were designed with very spe-
cific databases in mind so the systems could not be easily
adapted to a different database. Today, all aspects of such
systems have progressed greatly. Natural language process-
ing has improved to produce a more realistic human-like
conversation, systems are more adaptable and portable, and
such systems have been integrated into other convenient ar-
eas like Facebook messenger and Google. However, it is still
an active research field with much more to be done. This
section will shed some light on the history of NLIDBs and
the design of such systems.

2.1 Brief Background of NLIDB Systems
The best known NLIDB in the early period was Lunar, a

natural language interface to a database containing chemi-
cal analyses of moon rocks[8]. Early NLIDB systems such as
Lunar were each built having a particular database in mind,
which made them difficult to use with different databases.
By the late seventies, several more NLIDBs had appeared,
such as Rendezvous and Ladder, which could be used with
large databases, and could be configured to interface to dif-
ferent underlying database management systems[1].

In the mid-eighties, numerous NLIDBs were developed
that demonstrated impressive functions and potential. How-
ever, NLIDBs did not gain the rapid and wide commercial
acceptance that one would expect after seeing the progress
of the field. The development of successful alternatives to
NLIDBs, like graphical and form-based interfaces, and the
intrinsic problems of NLIDBs were probably the main rea-
sons for this stunt of growth[1]. However, the growth of
NLIDBs has been greatly accelerated lately with improve-
ments in speed, efficiency, portability and adaptability. With
the growth of IPAs such as Siri and Cortana, as well as the
integration of chatbots with access to data in commercially
successful platforms like Facebook, it looks like NLIDBs are
here to stay and further grow.

2.2 Basic Architecture
Generally, there is a common flow of tasks that most

NLIDBs follow. While the specific tools and algorithms may
differ, a higher level pattern can be observed. Some aspects
of that high level analysis of the basic architecture are de-
scribed in this section.

2.2.1 The Bigger Picture

Most NLIDBs, including IPAs such as Apple’s Siri, follow
the following workflow to accomplish a task:

1. Abstract the input text from the interface and pass
it on to the next layer. If the system supports speech
then transcribe human speech such as commands, ques-
tions, or dictations into text before passing it.

2. Use natural language processing to translate transcribed
text into “parsed text”. The parsed text is then ana-
lyzed, detecting user commands and actions. (“What
is Bryan’s contact number?”, “What is the weather
like?”, etc.)

3. If the system is linked to a specific database, apply rel-
evant queries to extract the necessary data. In cases
of general purpose systems, data mashup technologies
are used to interact with 3rd-party web services to per-
form actions, search operations, and answer questions

4. Transform output of the database or 3rd-party web
services back into natural language text.

5. Present the output to the user interface. Use TTS
(text-to-speech) technologies to transform the natural
language text into synthesized speech if necessary.

This is a common workflow that many NLIDB systems
implement, including Robyn. However, as Robyn has a very
specific domain of knowledge, setting up appropriate queries
and applying them against specific databases remains cen-
tral in the workflow for Robyn. The relationship can be seen
diagrammatically in Figure 1.

2.2.2 Layers of an NLIDB

Figure 2: Bhatia’s Layered Architecture

Bhatia et al. present a higher level architecture that rep-
resents most standard NLIDB systems found today. They
describe their architecture based on an n-tier layered archi-
tecture as described below[2]:

• The first layer is the User Interface (UI) layer which
has the user interface module. The user interface pro-
vides a communication interface to interact with the
user. The user interface module gives the input sen-
tences to the Dialogue Manager which parses the sen-
tence and identifies the intention of the user.

• The second layer is the Discourse layer. This layer
performs the actions of the Dialogue Manager which
are helpful in identifying the intention of the user.

• The third layer is the Domain Specific layer. This layer
requires the domain specific knowledge to be encoded
in the Dialogue Manager.

• Once the intention is identified, it makes a call to an
appropriate agent. The agent forms the fourth layer
of the server. The agent performs the required action
and passes the results back to the Dialogue Manager.

• The fifth layer is the Database layer, which represents
the knowledge of the application.

Based on Bhatia’s et al.’s model, Robyn implements the
layered architecture. While the layers are not explicitly men-
tioned in Robyn, the model is very evident in the architec-
ture.

2.2.3 Dialogue Model
An important part of the architecture of any NLIDB is

the handling of dialogue. To have a meaningful and effi-
cient conversation, the Agent Based Dialogue Model men-
tioned by Wobcke et al. is an informative as well as intuitive
method. A simple layout of the model is present in figure 3
[7]:

Figure 3: Agent-Based Dialogue Model[7]

The Coordinator maintains the dialogue model, including
the conversational context and other domain-specific knowl-
edge as its internal beliefs, as follows:

• Discourse History: maintains the conversational con-
text such as information about the current and past
dialogue states

• Salient List: maintains a list of objects which have
been mentioned previously in the conversation, i.e. the
objects that are in the focus of attention

• Domain-Specific Knowledge: includes domain-specific
vocabulary and information of the tasks that are sup-
ported, used in interpreting the user’s requests

• User Model: maintains information about the user
such as current device, preferred modality of interac-
tion, physical context, preferences, etc.

While the natural language processing aspect of Robyn in
its current state is still in the early stages, several aspects
of this agent-based model will be implemented in the near
future for dialogue handling and context maintenance.

3. DESIGN
This section describes the different aspects of that design

such as a higher level analysis of the system, software used,
and the architecture.

3.1 Higher Level Analysis of Robyn
Three broad goals were identified that would be necessary

to construct an NLIDB system:

• Building a chatbot interface that handled the conver-
sation and understood the requests/questions from the
user. This would be the natural language processing
part of the system.

• Creating/compiling a database that had reliable infor-
mation related to the domain of knowledge, medicine
in this case.

• Integrating the database into the chatbot and setting
it up so that the information can be accessed in an
organized, efficient manner.

While the above goals were necessary to create a system
like Robyn, Robyn also required a workflow. Robyn, at a
high level, implemented the models discussed in sections
2.2.1 and 2.2.2, ensuring the system would function. The
workflow in Robyn works like the following:

1. First, via a text based interface, Robyn provides a plat-
form for users to communicate and ask questions in a
natural language (English, in this case). The input
could be general phrases such as “Hello!”, “How are
you?”, or questions related to medical health, in which
Robyn specialized such as “What is AIDS?” or “What
are the symptoms of common cold?”

2. The input would then be analyzed and parsed. If it is
a general phrase such as “How are you?” then an ap-
propriate response such as “I’m fine, how about you?”
would be chosen. However, if the input is a medicine
related question then a necessary query is formed.

3. The query then would be applied against the right
database.

4. After the correct data is extracted from the database,
the data is then put in a sentence in a natural language
(English for Robyn), maintaining the flow of the nat-
ural language.

5. Finally, the response, whether general phrase or medicine
specific, is then output in the text based interface

Figure 4: Robyn’s software architecture

3.2 Software Used
Brief descriptions of the software used, and the reason for

the choice are given below. The details about the imple-
mentation are discussed in section 4. The relationship of
the software used can be seen in the architecture depicted
in figure 4.

3.2.1 AIML
AIML stands for Artificial Intelligence Markup Language.

It is an XML-compliant language used for creating natural
language software agents. It can be used to handle natu-
ral language processing, and provides tools to do so. AIML
describes a class of data objects called AIML objects and
partially describes the behavior of computer programs that
process them[5]. AIML objects are made up of units called
topics and categories, which contain either parsed or un-
parsed data. Each category tag contains a pair of pattern
and template tag. The system searches the pattern accord-
ing to user’s input, and produces the appropriate template
as a response[6].

AIML is the heart of natural language processing part of
Robyn. When the user inputs a text, AIML handles the
response and provides the necessary query that is applied
against the database if necessary. AIML does not interact
directly with the UI layer, but rather talks to the Python
program, receiving the user input from the Python program
and sending the response/query statements back to it.

3.2.2 SQLite
SQLite is an in-process library that implements a self-

contained, serverless, zero-configuration, transactional SQL
database engine[4]. SQLite is an embedded SQL database
engine but unlike most other SQL databases, SQLite does

not have a separate server process. SQLite reads and writes
directly to ordinary disk files. A complete SQL database
with multiple tables, indices, triggers, and views, is con-
tained in a single disk file.

The portability, low barrier to accessibility and compact-
ness of SQlite made it an excellent choice as the database
engine for Robyn. Additionally, thanks to solid reliability of
the SQLite3 module in Python, the process of integration of
the SQLite database was easy and reliable.

3.2.3 Python
Python is a widely used high-level, general-purpose, inter-

preted, dynamic programming language whose design phi-
losophy emphasizes code readability. While Python is an
excellent tool in general, what made it perfect for Robyn
was the availability of modules and the smoothness of the
implementation of these modules. This made the integration
of the database as well as the natural language interpreter
quick as well as reliable.

The two main modules that were used in the Python
scripts were Py3kAIML[3] and SQLite3[4]. Py3kAIML is
an interpreter for AIML, implemented entirely in standard
Python. It allows for the Python program to interact with
the AIML scripts. The SQLite3 module provides a SQL
interface compliant with the DBAPI 2.0 specification. It al-
lows the Python program to connect to the database and
perform database operations.

3.2.4 HTML/CSS/JS + Bottle
HTML/CSS and JavaScript (JS) are standard choices of

tools for most websites and web applications. HTML pro-
vides structure to the webpage, while CSS gives the styling
to the graphical aspect. Finally JavaScript helps to add
dynamic functions to the page.

HTML/CSS and JavaScript were used for Robyn’s web
interface to design a chat box. Furthermore, as Robyn is pri-
marily written in Python, Bottle was used to host the scripts
on the webpage. Bottle is a fast, simple and lightweight
WSGI micro web-framework for Python, which was perfect
for Robyn.

4. IMPLEMENTATION
The implementation of Robyn included of several indepen-

dent components that came together to provide the func-
tionality. Described below are some of the aspects of the
implementation.

4.1 Connecting Robyn with AIML/Database
Python provides reliable, minimal configuration modules

for AIML as well as SQLite. Hence, integration of AIML and
the database took minimal coding. While Robyn’s natural
language processing is handled by multiple AIML files, they
are all linked through a single standard startup file, which
makes the necessity to edit the Python code minimal when
the AIML file structure has to be changed.

4.2 Dialogue Handling
On a basic level, AIML responds to user inputs by match-

ing the pattern, choosing the one that is higher in the hier-
archy in case of multiple matches.

Analyzing the code in Figure 5, when a user asks “How
are you?” then the pattern is matched and AIML sends the
response“Thanks for asking. I’m good, how are you?” to the

Figure 5: Example of AIML code for general re-
sponses

Python program. However, when a medical health related
question is asked, appropriate data needs to be extracted
from the database. Hence, a query statement needs to be
returned by the AIML engine. Let’s look at another example
in Figure 6.

Figure 6: Example of the AIML code for medical
health related questions

When questions like “What are the causes of common
cold?” are asked by the user, the AIML will match the pat-
tern and return a query statement to the Python program.
The related database here is contained in two tables. The
first table contains disease names and their unique id num-
bers. The second table contains facts about the diseases such
as symptoms, treatment, descriptions along with the unique
id numbers of the diseases. Here, the query statement will
first grab the id of the disease, matching against the name
of the disease provided by the user. Then, via another query
using the id number, the matching fact is picked and sent
to the Python program by SQLite. There is an exclamation
mark right before the query statement, which is explained
in the next subsection.

4.3 Handling Query Statements
It has been briefly discussed how the AIML engine sends

the response to the Python script. After receiving the re-
sponse, the script needs to decide if the response needs to be
directly output or a query against the database is necessary.
The way Robyn handles it is by placing a special character
(!) in front of query statements, allowing identification of
the nature of the response..

Figure 7: Algorithm to handle queries

Here, as seen in the algorithm in figure 7, when the special

character (!) is detected in the start of the response returned
by the AIML engine, first the character is removed. Then
the query statement is applied against the database, extract-
ing the necessary data and returning it to the UI screen.

4.4 Designing Web Interface
After the first four prior mentioned components were cor-

rectly implemented, Robyn took the form of a command line
interface NLIDB system. However, for reasons of accessibil-
ity, ease of use, and efficiency, a web interface was created
for Robyn, making Robyn a web app in the process.

Robyn is a single-page web app with a structure similar
to a typical chatbot. A chat box was set up to display the
conversation between the user and Robyn. The user input
was abstracted via a text field, which is passed to the python
scripts handling the AIML, via the Bottle framework. The
response returned by the python script is appended to the
chat box. A visual state of the web interface can be seen in
figure 8.

5. RESULTS
Robyn currently exists as a locally hosted web application.

The system is fully functional, with all the connections suc-
cessfully plumbed and running. At the moment there are
about 3 large AIML files to handle some general day-to-day
conversations such as“Hello!”, ”How are you?”and“Who are
you”. There are also some specialized AIML files to handle
Robyn-specific conversations such as “What is AIDS?”, or
“What are the causes of Tuberculosis?” The database cur-
rently consists of about 4000 diseases with facts related such
as description, symptoms, causes, diagnosis and treatment.

5 test cases in the form of sets of questions were formed
to test Robyn. Each test case focuses on different specific
features of Robyn that is important to Robyn’s functionality.
For this paper, the 5 features that the tests focused on were
Robyn’s knowledge base, handling of variation in questions,
handling of variation of diseases, context maintenance and
change of context with topic.

The test case runs successfully, with all the responses from
Robyn matching the expected results. Robyn was able to
answer about different facts related to flu including defini-
tion, symptoms, causes, treatments and diagnosis. When
the same questions were asked in a different lingual form,
Robyn was still able to answer the questions. Multiple dis-
eases could be included in the same conversation session.
Finally Robyn was able to maintain context when talking
about a specific disease, and also was able to change context
correctly when the topic was switched. The test cases as
well as the results in the form of conversation between the
tester and Robyn is transcribed below for each test case.

5.1 Knowledge Base
The first test case is focused on the breadth and depth of

Robyn’s knowledge about diseases. A series of questions are
asked to see if Robyn can answer about various facts related
to a disease. The level of detail of Robyn’s answers is also
examined in this test. While for other test cases Robyn’s
responses have been condensed into a couple of words for
the purpose of the paper’s conciseness, followed by to
mark the answer’s continuation, for this test case Robyn’s
full responses have been included to present the level of de-
tail and information of the responses.

Figure 8: Robyn’s web interface

Test case:

• What is flu?

• What are the symptoms of flu?

• What are the causes of flu?

• What are the treatments of flu?

• What is the diagnosis of flu?

Results:

You: What is flu?
Robyn: Influenza or flu is a viral infection that attacks
the respiratory system including the nose, throat, bronchial
tubes, and lungs. Though it is commonly called flu, in-
fluenza is not the same virus that causes diarrhea and vom-
iting.
You: What are the symptoms of flu?
Robyn: Common signs and symptoms of flu include fever
over 101 F among adults and 103-105 among children, chills
and sweats, headache, dry cough, muscular aches and pains,
fatigues and weakness, nasal congestion, loss or appetite and
diarrhea and vomiting among kids.
You: What are the causes of flu?
Robyn: Three strains of viruses cause the flu namely in-
fluenza A, B, and C. A is responsible for the deadly influenza
pandemics around the world, which strikes every 10 to 40
years. Type B meanwhile can lead to smaller and more lo-
calized outbreaks while Type C has never been connected
with any large epidemic. Type C is also a stable virus com-
pared to A and B since they are constantly changing and
new strains can appears regularly.
You: What are the treatments of flu?
Robyn: Flu treatment is usually just bed rest and plenty
of fluids. In some cases though, an antiviral medication
such as oseltamivir (Tamiflu) or zanamivir (Relenza) may

be prescribed. Said drugs can treat both Types A and B
of influenza and work by deactivating an enzyme that helps
the virus grow and spread. Oseltamivir is an oral medication
while zanamivir is inhaled through a device similar to that
of an asthma inhaler. Side effects such as lightheadedness,
nausea, vomiting, loss of appetite, and trouble in breathing
are the common side effects of both medications.
You: What is the diagnosis of flu?
Robyn: A thorough physical exam is needed to diagnose
the flu and a chest x-ray may be needed if pneumonia is
suspected. Blood work may also be needed such as CBC,
blood cultures, and sputum cultures. An antigen detection
test meanwhile is the most common method of diagnosing
the flu. If the flu is widespread in the community, no further
testing will be required.

5.2 Handling of Variation in Questions
The second case is focused on the range of questions Robyn

can handle. Instead of constantly asking in the form of
“What are the” questions, the questions were asked in a va-
riety of forms.

Test case:

• What is flu?

• List the symptoms of flu.

• What causes flu?

• How can I treat flu?

• How can I tell if I have flu?

Results:

You: What is flu?
Robyn: Influenza or flu is a viral[Answer continued]

You: List the symptoms of flu.
Robyn: Common signs and symptoms of F
You: What causes flu?
Robyn: Three strains of viruses cause the flu
You: How can I treat flu?
Robyn: Flu treatment is usually just bed
You: How can I tell if I have flu?
Robyn: A thorough physical exam is

5.3 Handling of Variation of Diseases
The third test case examines if Robyn can talk about mul-

tiple diseases in the same conversation. Questions related to
three different diseases were asked in succession.

Test case:

• What causes bronchitis?

• How can I cure dislocated shoulder?

• What is AIDS?

Results:

You: What causes bronchitis?
Robyn: Bronchitis is often caused[Answer continued]
You: How can I cure dislocated shoulder?
Robyn: Putting your shoulder bones back
You: What is aids?
Robyn: AIDS means Acquired Immune Deficiency

5.4 Context Maintenance
The fourth test case tests Robyn’s ability to interact in

context and maintain it. The diseases were not explicitly
mentioned after the first time.

Test case:

• What is jaundice?

• What are the symptoms?

• How can I treat it?

• What causes it?

Results:

You: What is jaundice?
Robyn: Jaundice is the yellowish[Answer continued]
You: What are the symptoms?
Robyn: The symptoms of jaundice are
You: How can I treat it?
Robyn: With the exception of the treatments
You: What causes it?
Robyn: When red blood cells get old

5.5 Change of Context with Topic
The final test case checks if the context changes when

the topic of the conversation (disease) changes. 3 related
questions to a disease were asked in context before asking

another 3 contextual questions related to a new disease.

Test case:

• What is anemia?

• What are the symptoms?

• How can I treat it?

• List the symptoms of broken hip.

• What causes it?

• How can I tell if I have it?

Results:

You: What is anemia?
Robyn: Anemia comes from the[Answer continued]
You: What are the symptoms?
Robyn: Symptoms of anemia can be vague
You: How can I treat it?
Robyn: Treatments for anemia vary
You: List the symptoms of hepatitis.
Robyn: Initial features are of
You: What causes it?
Robyn: Viral hepatitis can be caused
You: How can I diagnose it?
Robyn: Viral hepatitis conditions

6. CONCLUSION AND FUTURE WORK
Natural language interface to database systems have been

a field of massive interest in the realm of artificial intelli-
gence since its invention. With the integration of such sys-
tems in popular commercial machines, like Apple’s Siri and
Microsoft’s Cortana, as well as platforms, like Facebook it
can be safely assumed that further development of NLIDBs
will continue. Robyn, an NLIDB with medical health as its
domain of knowledge, is another example of such a system.
The software used to write Robyn such as Python, SQLite
and AIML are popular tools, which will hopefully make the
barrier to learning more about such systems minimal. Af-
ter some improvement, Robyn will hopefully be a valuable
reference to when talking about medical health.

The core components of Robyn have already been written
and connected, and the web interface is fully functional with
medical information from the database easily accessible with
minimal effort on the user’s end. Following are some of the
tasks I hope to achieve in near future to improve the range,
quality and efficiency of the conversations:

• Platform: While the web app works just like expected
at the current state, I hope to add some more func-
tionality to Robyn such as connecting with other users,
notes, quick search tab and so on.

• Natural Language Processing: While natural language
processing of a system is something that will always be
improvable, I wish to significantly focus on this aspect
of Robyn. Along with expanding the range of conver-
sations she can handle, I also wish to work on building
and maintaining more context related to the conversa-
tions. Indexing of the conversation to remember the

specific user history is something I am considering as
well.

• Expanding the Database: While the current database
is fairly extensive with 4000 diseases, I wish to expand
the database to include more related information. Pos-
sible expansion I am thinking about is database related
to medicines/drugs, diet information, healthy habits
and so on.

7. ACKNOWLEDGMENTS
This work was possible through the guidance and sup-

port of my senior capstone advisers/mentors Dave Barbella,
Xunfei Jiang and Charlie Peck. I would also like to thank
the CS Department at Earlham for funding the project, and
Adam Shwartz for his assistance with debugging. Finally, I
would like to thank the chatbots.org forum community for
their valuable discussions.

8. REFERENCES
[1] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.

Natural language interfaces to databases–an
introduction. Natural language engineering,
1(01):29–81, 1995.

[2] S. Bhatia and A. Bharambe. Architecture for an
mobile-based intelligent personal assistant. 2009.

[3] https://github.com/huntersan9/Py3kAiml. Py3kaiml.

[4] https://sqlite.org/about.html. About sqlite.

[5] https://www.pandorabots.com/pandora/pics/
wallaceaimltutorial.html. Aiml overview.

[6] D. Q. Nguyen, D. Q. Nguyen, and S. B. Pham. A
vietnamese text-based conversational agent. In
International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent Systems,
pages 699–708. Springer, 2012.

[7] W. Wobcke, A. Nguyen, V. H. Ho, and A. Krzywicki.
The smart personal assistant: An overview. In AAAI
Spring Symposium: Interaction Challenges for
Intelligent Assistants, pages 135–136, 2007.

[8] W. A. Woods, R. M. Kaplan, and B. Nash-Webber.
The lunar sciences natural language information
system: Final report. Bolt, Beranek and Newman,
Incorporated, 1972.

