Measuring User Preferences for Web Presentations Using
Open-Source Tools and a Holistic Approach

Craig Earley
Earlham College Computer Science
801 National Rd W
Richmond, Indiana - 47374
cjearley13@earlham.edu

ABSTRACT

This paper explores human-computer interaction with an
emphasis on how an interface affects the human user’s be-
havior. It describes a history of academic and popular re-
search about the topic, which borrows from psychology but
occupies a growing body of research in computer science. It
then articulates the motivations and design of a software ap-
plication currently under development that will allow a web
developer to easily test these principles with their own web-
sites in a straightforward, rigorous way without the need for
a large-scale usability test. It concludes with a look to the
future and a few thoughts on the impact of this knowledge
for both social and computational sciences.

CCS Concepts

eHuman-centered computing — HCI design and eval-
uation methods; User interface programming; Web-based
interaction; HCI theory, concepts and models;

Keywords

human-computer interaction; user interfaces

1. INTRODUCTION

Computer science is about how to structure and process
information. The computer is a tool by which humans exe-
cute those processes in some way, be it representing math-
ematical data, encoding visual information for display, or
exchanging information with some other computer. In prac-
tice, this necessitates a clear understanding how a computer
affects its user and an ability to use that understanding to
make decisions about design. This subdiscipline is human-
computer interaction (HCI), and it is an important and chal-
lenging component of the field, and a practical application
of HCI is software application design.

At their most basic level, software applications and web-
sites facilitate interactions between a user and some data,
which might otherwise be too complex or technical for a user

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

© 2016 ACM. ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

to carry out for themselves. Research into human-computer
interaction has shown that changes to the presentation of
objects in a user interface (UI) affects how users respond to
the information - in other words, design is not value-neutral
from the perspective of user behavior.

This concern is modern. FEarly computers were large,
bulky, mechanical, and heavy, relying on users to input
punch cards rather than keystrokes and mouse clicks. Smaller
computers and command-line interfaces substantially im-
proved the ability to navigate a computer, but only with the
widespread distribution of graphical user interfaces (GUT’s)
did they become a technology for the public. Now the
strongest market is mobile devices, which do not use physi-
cal keyboards at all and rely instead on touching on-screen
buttons, gestures and forces, and voice input.

This paper describes some of the central insights in HCI
about the effect of UI's on user behavior. It surveys both
computational theory research and the more well-developed
literature body of the private sector. It asks questions about
whether a Ul is well-designed: that is, whether the user be-
havior it encourages maps well to the needs of its producer
and distributor. It also emphasizes the importance of choos-
ing those needs carefully. It describe a piece of software now
in development to make programming a Ul easier for inde-
pendent developers. It concludes with a summary and a
short analysis of the implications.

2. RELATED WORKS

Consider three layers for understanding this topic. First,
theoretical background informs the reasons for its impor-
tance and a vocabulary with which to discuss it. Second,
the structure of the data underlying an interface, including
the basic visual shape in which it is displayed, allows a user
to handle it at all. Finally, an interface gives subtle clues to
users, often at an intuitive level rather than a logical one,
about how they should behave and what choices they should
make. It will be shown that, while some application devel-
opers aspire to free the user to do as they wish, doing this
without imposing any influence at all is likely impossible in
practice.

HCI has been examined from a range of perspectives in
the academic literature. The following is a summary of the
relevant research, including those portions relevant to the
project itself. It first discusses the basic theoretical views
that have guided researchers in this topic. It then proceeds
to show a few brief case studies also conducted in academia.
Finally it draws on the popular research in the topic, which
is in some cases more extensive and more attuned to the

User Interface

Application

Information Architecture

Basic Theory

Figure 1: The basic structure of this paper and a
way to consider how an application relates to a user.

most modern technology given its commercial applications.

Before continuing, a brief aside is necessary about the dis-
cipline of HCI. It is a field that, at the most fundamental
level, emphasizes communication. Haynes et al., for exam-
ple, conducted a series of interviews with HCI design re-
searchers about how design facilitates understanding. They
described several established and emerging social theories
that affect HCI. Of particular concern in this context is their
description of the established, fundamental frames of refer-
ence cited by their interviewees with regard to what an ex-
planation is. Most important are causality, instrumentality,
and prediction, all of which are relevant to considering user
responses within a given interface.[4]

Note that few of these papers carefully investigate specific
cases of Ul’s outside of an academic context, where much of
the work is done. Therefore a more thorough discussion of
these is the subject of the subsequent section.

2.1 Theory: Nudges and Behavioral Change
Support Systems

In the last decade, some psychologists and social scien-
tists have developed the notion of a “nudge” in the design
of a system. The most popular example came from Richard
Thaler and Cass Sunstein in their book of the same name.
A nudge is any change to the design or layout of a system
or its environment that changes the behavior of an individ-
ual but does not reduce the number of options available to
them in that system.[11] Liu et al.’s examination of behav-
ioral change is an example in computer science. They found
that, when experiencing a visual warning nudge, users were
less likely to click through a link and more likely to employ
a “dismiss” feature than when no warning was activated.[7]

Oinas-Kukkonen produced a theoretical framework about
how interfaces on a variety of platforms change behavior,
with an explicit emphasis on the human’s side of the inter-
action. This research in particular draws on his heuristic
series of specific changes an interface may want to produce,
and emphasized that this is a cross-platform phenomenon.[9]

Oinas-Kukkonen’s paper is worth elaborating in slightly
greater length than other sources, as it is among the most
detailed academic descriptions of these questions. He defines
the notion of a “behavioral change support system (BCCS)”
as “[an] information system designed to form, alter, or rein-
force attitudes or behaviors or both without using coercion
or deception.” Note that the definition is not limited to a
particular platform or even to computer systems themselves,
though this the context he explores.[9]

He specifies three types of changes: changes in attitude,
in behavior, or in compliance. Which of these a system is
meant to solicit is the “intent” of the system. He notes that

the context of the event matters as well, and that designing
such a system inevitably requires a strategy that takes into
account the computational and social contexts of a potential
user. Over time using the system, a user’s attitude may also
be subject to “reinforcement, alteration or formation.”[9]

In his summary, he emphasizes perhaps the most impor-
tant point of research in this topic: those designing these
systems, for whatever platform, are exercising control over
their users whether they intend to or not. This is not a
harmful process; as Oinas-Kukkonen himself describes, it is
inevitable and can produce desirable outcomes for both the
designer and the user.[9]

Thus a piece of software has, as one of its functions, be-
havioral change. Different changes may be part of the design
considerations of that software, and they may affect attitude
as well as action. This is not a pitfall to be avoided, but a
reality to be recognized and considered in the design and
construction of a given program.

2.2 Information Architecture and Applications

The first layer up from theory is the structure of the in-
formation an application handles. Here information archi-
tecture can be understood as both the content and purpose
of the data on the backend of a given application. Several
researchers have considered these topics in depth. One of
these relates to the structure of the information presented
to the user: how much should be presented and what form it
should take given the needs and constraints of the project.

Because space on a screen is fixed within a given plat-
form, it is necessary to control the factors presented to the
user. Cockburn and Gutwin consider cases in which input is
constrained - that is, it is not through mouse clicks and typ-
ing, where options are virtually limitless and interfaces may
be designed as such, but through one factor such as touch
in a mobile application. They find that there is a measur-
able difference between novice and expert navigation within
an interface, and - crucially - that different interfaces cause
people to respond differently (“intra-interface” and “inter-
interface” differences, as it were). Their experiments exam-
ine three different interface types to ensure generality. They
considered a simple scrolling list, a binary search list, and
a binary search grid in which items in the list are placed in
boxes in a grid (visually, the first two are one-dimensional,
the last is two-dimensional). For each they predicted the
time a user would take to complete a given task through
them. They made two broad theoretical conclusions:

e Different interface types produce different user behav-
iors.

e Novices and experts navigate an interface differently.

Thus their model is a useful analytical tool for the structure
of information.[3]

Architecture must be an important consideration when
designing for both computers and users. A properly-designed
data structure provides functionality for a software applica-
tion that can facilitate some kind of user interaction. When
placed in an interface that is accessible, the right informa-
tion architecture enables users to complete tasks more ef-
fectively and quickly. However, the proper architecture is
a minimum: a fundamental requirement to a useful website
or application, but not one that ultimately determines user
choices.

2.3 Interface Design

The next layer of this topic is a brief overview of the design
research from the private sector. This is because the incen-
tive for companies to produce good UI’s that enable their
customers to interact with them creates a strong profit mo-
tive to invest in examining interfaces and people’s reactions
to them.

For example, the classic The Design of Fveryday Things
by Donald Norman approaches product design, digital and
physical, from the perspective of usability. He emphasizes
the responsibility of the designer, e.g., that “human error”
is often a consequence of design flaws instead of clumsiness,
that product designers have an obligation to minimize these
problems rather than shifting blame to users. Early in the
book he describes in some detail the effect of design on the
psychology of the user.[8] His insights have in some respects
filtered into the more general knowledge of people concerned
with design, and it affected the type of research included
here.

In interface design as well as in any science discipline, the-
ory and intuition are not sufficient for complete understand-
ing. Experiment is necessary, and for this reason the disci-
pline of quality analysis (QA) and usability testing emerged.
Over time designers have discovered the best protocols for
carrying out such tests, and their benefits and challenges
form the motivation for the software component of this re-
search project.

The combined academic and popular research emphasize
some common principles: ease of use, simplicity, and clarity.
These design principles guide the general project. Further
research will examine more carefully the details of particu-
lar features, but for current purposes this general review is
sufficient.

3. EXAMPLES

These three layers of the topic can be supplemented by
a fourth, which is less academic but demonstrates the in-
sights of computer science on some important use cases. We
consider here the iOS design guidelines and how they in-
struct developers to think about users, and the social net-
work Nextdoor’s attempt to solve their site’s racial profiling
problem.

3.1 iOS Design Guidelines

The hardware-software giant Apple Computer has occa-
sionally published new guidelines for the design of UI’ss
within applications. Originally they published them for their
Macintosh desktop computer[2], but the most modern ver-
sion concerns the design of software applications for their
operating system iOS for iPhones, iPads, and other mobile
devices.

Most sections of the iOS user experience guidelines con-
tain tips about the proven approaches to making an appli-
cation functional, easy to learn, and pleasant to use. The
key themes, repeated throughout, include offering user feed-
back on actions that make a change to the application, being
simple and consistent, and making responses to gestures as
intuitive as possible.

While behavioral change is not explicitly described in the
guidelines, many of them imply a consideration for impact
on user behavior. Mostly, the guidelines hope designers will
avoid such impacts, emphasizing that, as a rule, decision-
making within a software application belong to the user.

From this principle they derive such notions as letting a user
cancel a decision, designing with consistency so users know
what each of the options presented to them mean (another
section is titled “WYSIWYG [What You See Is What You
Get]”), and using suggestions rather than requirements to
guide behavior. [1]

This is in keeping with the value of a user-centered ex-
perience, the running theme of the guidelines (and Apple’s
public relations). It is a call for simplicity, clarity, and user
control. This value and the principles which follow from
it also feature in the research literature: the findings of
Kalnikaite et. al., who found that an overwhelming UI pre-
senting too many options or indicators is excessive and slows
users down. [5]

3.2 Nextdoor

In general, design emphasizes users making a series of de-
cisions quickly and effortlessly. Given millions of customers,
shifts that change the behavior of even one percent of the
customer base’s purchasing decisions can substantially af-
fect corporate incomes. However, speed and likelihood of
transaction are by no means the only factor design affects.

Consider, for example, the case of Nextdoor, a social net-
working site for neighborhoods. They faced negative cov-
erage when some users noticed that the platform hosted
racial profiling: specifically, reports of threatening or suspi-
cious behavior observed in a neighborhood overwhelmingly
described suspects as “dark-skinned” or similar, and often in-
cluded little or no additional information. Pushback threat-
ened the reputation of the site and they sought to solve the
problem.[10]

To solve the problem, they made posting such messages
slower and more difficult rather than easier. A user posting
a message that specified race (see Figure 2) were required to
also fill out some subset of the other fields in the post. In
this case, the appearance of their interface did not change,
but it required the user to provide additional information.
As Shanani explained for National Public radio, this is ex-
tremely uncommon for social media companies, who prefer
to make posting as quick, easy, and effortless as possible.[10]
(The iOS design guidelines also emphasize this principle in
a section titled “Minimize the Effort Required for User In-
put’[1]).

This approach is atypical for such tools, and it is notable
in that it explicitly constraints user choice in a way that most
interfaces do not. However, it is in keeping with other im-
portant design principles. The iOS guidelines, for example,
emphasize feedback, and one function of Nextdoor’s change
was to provide feedback about a user’s action. It is also a
particularly strong instance of a recurring theme in design:
because design decisions affect user decisions, they must be
made consciously, and when systems do not work it is funda-
mentally the responsibility of the designer to improve their
design. Information architecture as well as interface design
must be carefully considered, their initial use tested, and
their future results monitored to ensure that such mistakes
are avoided or corrected.

4. SOFTWARE APPLICATION
4.1 Usability Testing

Ultimately, examples and guidelines are not sufficient to
determine the efficacy of a UL This requires a usability test.

Describe a person

ASK YOURSELF
What detalls can | add that will help distinguish this persen from other similar
people?
Describe clothing from head to toe. Police say this is the most helpful
to neighbors (and helps avoid suspecting innocent people).

When race is included, you must include at least 2 of the highlighted fields. (Why?)

Hair: black] ‘

Top: ‘ Shirt, jacket, color, style...

Bottom: ‘ Pants, skirt, color, style. ‘

Shoes: ‘ nike

Now give the other basics
Age:
Build:

Race: latino

Add this person

Figure 2: Screenshot from NPR. Note that, other
than additional text, the interface is the same before
and after the failed action.

In his concise popular book Rocket Surgery Made Easy, Krug
described the idea and execution of a usability test. In broad
strokes, the designer of an interface authors a test case, re-
cruits several volunteers, hosts them in a single room, and
observes them as they navigate. They ask questions, ob-
serve decisions, and take careful. The authors also set up
the space and often provide refreshments.[6].

The procedures for such a test are well-defined and consis-
tent, but in aggregate they are cumbersome and potentially
expensive. A large company will dedicate funding to both
time and money to do it, because they have a direct financial
stake in its success. However, for an independent program-
mer lacking a large organization or an easily-mobilized social
network, it may be impractical. Academics and developers
at a smaller scale may prefer less friction in return for less
specificity, particularly early in the development stages. The
tool described in the following section is designed to fill that
niche.

4.2 The Problem

The research supports the basic assumption of the soft-
ware package currently in development: design of interfaces
is of critical importance. This is true for the private sec-
tor for obvious reasons: increased click-through rates, more
pleasant experiences, and greater command of user behavior
are critical objectives to increasing the financial success of
companies. However, it is of value in academia as well: aca-
demics in numerous disciplines wish to guide their students,
research participants, and others to succeed in a given set
of goals. Academics lack access to the often proprietary re-
sources of the private sector. This is an even more acute
problem for students and independent developers, who lack
the resources for usability testing of any scale.

As stated, major firms have application programming in-
terfaces (API’s), internal guidelines, the credibility to or-
ganize testing and focus groups, and other advantages that
those not employed by them do not enjoy. The application
of the principles of human-computer interaction, thus, re-
quire extensive setup work. This can slow the progress of
research. Furthermore, many academics outside computer
science will find the maze of resources impenetrable without

dedicating substantial extra time to them.

This section describes a framework in which independent
developers may do some basic, small-scale testing indepen-
dent of their geographic and institutional constraints.

4.3 Motivations for the Chosen Approach

Technology increasingly disconnects work from geography
and institutional constraints. Every academic now has ac-
cess to the Internet and make frequent use of it in other
contexts through a browser, making it an approachable tech-
nology for them. In many cases, at extremely local scales,
simply referring to an extension, sending a little bit of in-
formation out via email, and waiting twenty-four hours to
collect anonymized data may serve their purpose.

Software currently under design and early implementa-
tion can channel both the strengths and the constraints of
being an independent developer and tester. Having demon-
strated the significance of allowing developers to investigate
interface design quickly and easily, parts of the project are
straightforward to construct.

I propose a framework for conveniently choosing, display-
ing, and analyzing interface options for comparison, for use
by smaller organizations, academics, and other developers
not affiliated with major technology firms. For now, this
will focus on speed, the feature most easily checked using
built-in system features and accessible software.

It should be emphasized that this solution is not preferable
to a full-scale usability test or A/B test. Given the proper
resources, such tests are superior and can produce substan-
tially greater insights. This project also focuses exclusively
on compliance, to use Oinas-Kukkonen’s language,[9] though
as will be described later this software could easily examine
behavior change as well. The vision for this project is to
allow projects on an individual or small-group scale to be
quickly and easily tested. As they scale, more robust tests
will still be necessary.

4.4 Hardware

Developing this software requires minimal hardware. It
will make use of the Earlham College Computer Science De-
partment’s Linux cluster computing system, as well as a
local Apple MacBook Air laptop, to design and implement
this tool. These computers include an apache web server
and other system tools in the event that later stages of the
project require custom web pages for testing. It also features
the PostgreSQL database infrastructure in which this data
will be stored (for more about this, please see the Software
and Data Collection sections).

4.5 Software

The solution under development is a browser extension
for Google Chrome. It will enable A/B testing on a small
scale using open-source tools, programming languages most
developers know or have been exposed to, and an accessible
platform.

An extension was chosen for several reasons. Perhaps the
most important is that designing and building them (rela-
tive to developing an entirely new, platform-agnostic appli-
cation) is straightforward. Chrome (and Firefox) extensions
have a robust API ecosystem and an active developer com-
munity.

Second, every computer user has web access and can eas-
ily download it, so such disparities as i0S/Android in mo-

bile applications do not apply. As a result, an extension
is portable, easily deployed, and (upon completion) easily
discovered by others.

Third, user behavior on the web is a ubiquitous case in
both commerce and academia. Desktop web users are not
the fastest-growing sector in consumer and commercial tech-
nology - mobile device users are - but the browser is still the
mechanism through which many users access other people’s
content on a computer. Together, these benefits make this
project simple and broadly useful.

The code is stored in a git repository in the Earlham
Computer Science Department’s GitLab account for ver-
sion control. The details of the software are continually
updated there, including sparse but clear documentation in
the README.md file.

The extension has two modes. One is a small author-side
tool containing two simple text boxes. The first asks for
start URL’s, the second for stop URL’s. In later versions
of the project, minimal metadata may also be collected (see
Data Collection). Upon a click, the software would output
a unique URL that can be shared. It will also store in the
entry in a PostgreSQL database. See Figure 3.

The output URL would activate the user-side face (a user
could also activate it by clicking the icon and choosing “User
Mode” or similar). Upon being opened, the URL would
randomly choose one of the input URL’s provided by the
author, send the user to that URL, and begin tracking user
progress. Upon reaching one of the stop URL’s, it would
prompt the user to approve saving the data to the author’s
records.

This could then be exported for quick A/B testing of web
features of either a large or small scale. Any data collected
would be anonymized and stored in a CSV.

It will also employ a small PHP program which connects
to a PostgreSQL database, run on the cluster computers, to
store the small amounts of data necessary for the project.
This is described below.

TR]
[[ouraton

th_ID

—
Author Mode Pat Entry
URL_out

PostgreSQL

User pag URL_start ——> URL_stop — Output

Figure 3: Flow diagram for the extension. Bold lines
indicate that the action is taken by the extension.

S. RESULTS AND CURRENT STATE

The software as it currently exists is a base case, in which
a test author provides two start URL’s and one stop URL,

which are written to a text file. On activating the browser
extension, a user is navigated to one of the suggested pages
and should begin regular web interaction with the goal of
reaching the stop URL. The extension begins a timer when
the user starts the extension, ends it when they reach the
stop site, and saves the information about that transaction
to a new file. The code is publicly available on the Earlham
CS Gitlab website.

Due to unforeseen complications in development, the project
has not produced data that can be analyzed. However, on
installing and running the extension, the time required to
move from start to stop based on the pre-defined path is
displayed.

Please see the Future Work section for details about the
necessary improvements to the extension that must be built
before it can be deployed for use.

5.1 Data Collection

This project may necessitate a request to the members of
the class to examine the software in its base case, where it
considers only a small set of start URL’s and a single stop
URL. They will go through the full process, including anony-
mous timing and data recording, as they each complete the
process for this one circumstance. The anonymized data can
then be analyzed using basic statistics to see which interface
tended to be completed more quickly, if any.

When the project scales to in-world use, the data col-
lection question must be answered in a way that preserves
privacy, collects data in a minimally invasive way, and is
transparent about how it stores the data without opening it
up to security breaches.

6. CONCLUSION AND FUTURE WORK

6.1 Progress of Human-Computer Interaction

Because of the financial interest in continued development
in this area, research into how to use design to affect user be-
havior will likely continue. Small increases in click-through
or purchase rates may translate into substantial added re-
turns at scale, more than compensating for the labor cost of
designing and upgrading the interface components of soft-
ware stacks.

More generally, UI designers and developers have proven
adept at adapting to new hardware and operating systems.
Companies now employ developers for platforms well be-
yond the web, especially mobile devices running on Apple’s
iOS and Google’s Android operating systems. The research
presented here is general enough to guide choices in all of
these contexts. The software, as described below, is substan-
tially more limited but will remain useful as long as websites
are a critical mode of interaction for the public with their
companies.

6.2 Future Software Development

The conception of the extension is this project is slightly
different from its current configuration, in that it was meant
to measure not completion rates but rates of user choices
- e.g., given a set of starting URL’s and a set of stopping
URL’s, which stopping URL does a user tend to land on?
Ideally the start URL’s will be different versions of a com-
pany’s web tool and the URL’s will be different webpages
within the same site. This data could be collected with sim-
ilar anonymization. Focusing the project on questions of

choice present opportunity for other design considerations
not yet explored.

There are less intensive considerations as well. For exam-
ple, this tool should be developed for browsers other than
Chrome. Firefox has a strong development community and
many “add-ons” of its own and would be a likely candidate
for a followup application. However, to gain any real audi-
ence in the future will require some mobile presence, likely
in the form of a companion app for each iOS and Android,
which would enable small-scale testing of application inter-
faces as well as webpages. Because of the complexity of
working with multiple operating systems and with entirely
different navigation methods on mobile, this component is
likely more complex than adapting it for different browsers.

Finally, this is a tool that need not be limited to program-
mers. At a high level, all a test author must provide is a set
of start URL’s and a set of stop URL’s. Academics in other
disciplines, such as psychology, often need to perform A/B-
style tests to collect data. As a result, they would find such
a tool, once built and scaled, easy to work with for purposes
otherwise mostly removed from computing.

6.3 Social Significance

This research was inspired by existing research by psy-
chologists and behavioral economics about the large effects
of small changes. That research, not explored in this paper,
focuses on the social sciences, public policy, and the counter-
intuitive behaviors of the human mind. Now that computers
are a central, if not defining, feature of the modern world,
a critical topic of research in the future must incorporate
computer scientists into this research. In turn, computer
scientists must recognize that their work has spillover effects
in these disciplines and in social life generally.

UI programmers specifically must be mindful that the de-
cisions they make affect the decisions users make. This is
not a condemnation but a recognition of it as an almost tau-
tological fact of computer interfaces. The specific changes
these programs drive may be positive, negative, or value-
neutral, but they must be considered as part of the design
and testing processes. (Indeed, if they did not make a differ-
ence there would be no need to hire people to build them.)
Software such as that proposed here, coupled with the re-
search purpose described above, provide ample opportunity
for such discoveries.

This research also highlights the importance of computer
scientists interacting with those outside their discipline. The
lessons here come from fields as far-reaching as design, be-
havioral economics, and psychology, in addition to computer
science, data modeling, and web development. Technology
is designed for people, of whom technologists and computer
scientists are one subset. The field of HCI and the specific
topic of interface design emphasizes this fact.

7. ABOUT THE AUTHOR

Craig Earley is a Computer Science major at Earlham
College and will graduate in December 2016. This is his
Senior Capstone paper.

8. ACKNOWLEDGMENTS

The author would like to thank Xunfei Jiang and Charlie
Peck, Computer Science Professors at Earlham College, for
their advice and instruction in completing this project and

his degree.

9. REFERENCES

[1] ios human interface guidelines.

[2] Macintosh human interface guidelines.

[3] A. Cockburn and C. Gutwin. A model of novice and
expert navigation performance in constrained-input
interfaces. ACM Trans. Comput.-Hum. Interact.,
17(3):13:1-13:38, July 2010.

[4] S. R. Haynes, J. M. Carroll, T. G. Kannampallil,

L. Xiao, and P. M. Bach. Design research as
explanation: Perceptions in the field. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, CHI 09, pages 1121-1130, New
York, NY, USA, 2009. ACM.

[5] V. Kalnikaité, J. Bird, and Y. Rogers. Decision-making
in the aisles: Informing, overwhelming or nudging
supermarket shoppers? Personal Ubiquitous Comput.,
17(6):1247-1259, Aug. 2013.

[6] S. Krug. Rocket Surgery Made Fasy: The
Do-1It-Yourself Guide to Finding and Fizing Usability
Problems. New Riders Publishing, Thousand Oaks,
CA, USA, 1st edition, 2009.

[7] J. Liu, S. Ruohomaa, K. Athukorala, G. Jacucci,

N. Asokan, and J. Lindqvist. Groupsourcing: Nudging
users away from unsafe content. In Proceedings of the
8th Nordic Conference on Human-Computer
Interaction: Fun, Fast, Foundational, NordiCHI ’14,
pages 883-886, New York, NY, USA, 2014. ACM.

[8] D. A. Norman. The design of everyday things. Basic
Books, revised and expanded edition edition.

[9] H. Oinas-Kukkonen. A foundation for the study of
behavior change support systems. Personal Ubiquitous
Comput., 17(6):1223-1235, Aug. 2013.

[10] A. Shanani. Social network nextdoor moves to block
racial profiling online. National Public Radio, 2016.

[11] C. Sunstein and R. Thaler. Nudge: Improving
Decisions About Health, Wealth and Happiness.
Penguin Books Limited.

