
Optimizing Number of Keyframes to Improve Compression
of MPEG-4 Files

Daniel Wilson
Department of Computer Science,

Earlham College,
dlwilson13@earlham.edu

ABSTRACT
Improvements in video resolution and color mean more hard
drive space is required to store the necessary data, increasing
the importance of minimizing the storage requirements of
video files. The MPEG file format uses keyframes to lessen
storage requirements by representing frames as changes from
previous frames instead of building the frame from scratch.
One problem that currently exists is that it is difficult to
determine the optimal number of keyframes to use. Adding
keyframes is computationally intensive, and their effective-
ness at lowering storage requirements is very inconsistent.
In this paper, we perform experiments to evaluate the ef-
fectiveness of keyframes in different types of videos, to find
the optimal number of keyframes in various situations. We
measure the compression ratio for different videos at vary-
ing keyframe values, and the time it takes to compress them
using ffmpeg. We show that how much a video benefits from
keyframes depends on the image content of the video. Fi-
nally, we demonstrate that we can apply this knowledge to
improve MPEG codecs to better calculate the optimal num-
ber of keyframes for various videos.

Keywords
compression, MPEG-4, keyframes, video

1. INTRODUCTION
As better technology becomes available, the quality of

videos increases. Resolution, frame rates, and color op-
tions can all be improved to provide a better user experi-
ence. These advancements come at the cost of data, since
higher quality video will require more storage space. This
means video files will take up more space on hard drives and
take longer to send over network connections. The motiva-
tion for this project is to combat these issues by examining
how keyframes are allocated in MPEG files to further reduce
the space required to store data. While many file formats
and codecs have been researched as methods of compressing
video files, this project will focus on the open-source project

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

FFMPEG and the MPEG-4 file format due to their accessi-
bility and popularity.

We will be preforming an experiment where we compress
various MP4 videos with different numbers of consecutive
allocated keyframes. We will record the compression ratio
at each number of keyframes, and compare how well dif-
ferent types of videos compress with different numbers of
keyframes. We will use this information to develop an algo-
rithim designed to detect the optimal number of keyframes
for a video, and allocate an appropriate number of them
accordingly.

This paper will be organized as follows. First, we will
introduce the concepts of motion compensation, transform
coding, and entropy encoding since it is important to es-
tablish a basic understanding of MP4 compression to clarify
the rest of this project. Second, we will provide detailed de-
scription of the problem, the software used, and the design
of the project. After that, we will describe the results of
our experiments. To conclude, we will show how the results
of our experiment can be applied in an algorithm to better
allocate keyframes.

2. RELATED WORK

2.1 Motion Compensation
Since this project deals with the compression of MPEG-4

files, it is critical to understand their architecture. MPEG
files consist of three major frame types, which are called I
frames, P frames, and B frames [9]. These frames minimize
the space required to store a video file through a process
known as motion compensation. I frames, often referred to
as independent frames, contain all the necessary data to dis-
play that particular image on the screen. They do not rely
on information from any previous frames to be displayed. P
frames, by contrast, take advantage of the fact that a frame
in a video is likely to be similar to previous frames [9]. Since
the colors and general locations of images are likely to be re-
semble previous frames, P frames use motion vectors to rep-
resent the movement of blocks of pixels. Instead of storing
all of the information representing the color of each pixel,
P frames are able to represent much of the information in
the frame as positional changes from the previous frame. B
frames are similar to P frames except that they use bidi-
rectional prediction. This means they not only use motion
vectors to predict the motion of future blocks of pixels, but
they also use backward prediction to represent the locations
of blocks at previous frames. While more predictive frames
use less space, it is necessary to use independent frames as



Figure 1: A visual representation of the sequence of
frames in an MP4 file [8].

a starting off point from which predictions can be made.
Thus, MPEG files contain a sequence of I, P, and B frames,
as is exemplified in the figure.

2.2 Transform Coding
Another important compression technique MPEG files use

is known as transform coding [9]. Transform coding divides
an image into 8 x 8 pixel blocks. Instead of storing the color
code for each pixel in the image, transform coding uses a
discrete cosine transformation to represent the approximate
color for each of the pixels. For small size blocks of pix-
els, the difference isn’t noticeable to the human eye, but it
largely reduces file size.

2.3 Entropy Encoding
The final technique MPEG files use to compress data is en-

tropy encoding. Entropy encoding is a method of compres-
sion that takes advantage of the fact that certain sequences
of bits may appear more often than others by represent-
ing more common sequences with fewer bits [9]. It replaces
longer sequences of bits that appear often in a file with a
shorter sequence specifically meant to represent the longer
sequence. This reduces the overall file size, since the most
common information requires the least space to store.

2.4 Features
One important aspect of compression algorithms for MPEG

files is that they must allow a certain set of core features.
Compressing a video file is far less useful if it compromises
the ability to use basic features one would expect when
watching a video. For example, a good compression algo-
rithm must allow for random access [4]. From a practical
standpoint, users watching a video will often want to skip to
a particular part in the video. While minimizing the file size
may be helpful when storing or transferring the information,
the user still needs to be able to access random parts of the
video for the compression algorithim to be practical. Other
important features of an MPEG compression algorithim in-
clude forward searches, reverse playback, audio-visual syn-
cronization, and robustness to errors [4].

3. DESIGN

3.1 Problem Definition

Figure 2: The relationship between the encoder, de-
coder, and the video the user views [9].

The problem with data compression is that it is nearly
always a trade off. A video file, for instance, could be easily
reduced to require much less space, but this would require
significantly lowering its quality. Conversely, a video that it
higher quality may look better, but will take up more space.
Data compression algorithms attempt to do a reasonable job
of both; they attempt to maintain a decent level of quality
while also keeping the file size as small as possible. To ad-
dress this problem, people are always experimenting with
better methods of storing data.

3.2 FFMPEG
The software that we use is called FFMPEG, which is a

free, open source, command line software which compresses
MP4 files. We will use it as a starting point, and will attempt
to further its compression capabilities using the process pre-
viously described. FFMPEG contains many encoders and
decoders that are used when working with MP4 files. Below
is a visual representation of how the encoder, data file, and
decoder interact to store and play video. For our project,
we are working with the h264 codec.

3.3 Project Design
The use of different frame types is one of the most im-

portant ways MP4 files reduce space requirements. Inde-
pendent frames require more space, but a certain number of
them must be included in a file to provide a starting point
for prediction frames. Prediction frames, or keyframes, are
smaller, but they require an initial starting point to predict
from. This creates an interesting interaction between the
number of independent frames and the number of keyframes.
Too many independent frames increases the size of the file,
since independent frames are larger. Too many keyframes
can also reduce the file size, since prediction frames become
larger is there is less information to use as the starting point
as the prediction. This means that there is an optimal num-
ber of consecutive keyframes that should be used, where the
video file uses as few independent frames as necessary while
still using enough to allow the keyframes to be small in size.
Our project aims to reduce the size of MP4 files by find-
ing the optimal number of consecutive keyframes for various
types of videos.

To accomplish this goal, we have designed an experiment
with FFMPEG where we will test videos to find their op-
timal allocations of keyframes. We have chosen six sam-



Figure 3: Graph 1: A graph showing the compres-
sion ratios for the different types of videos with var-
ious numbers of forced consecutive keyframes.

ple videos which vary dramatically in file size, resolution,
color, and length. Using FFMPEG and the h264 MP4 codec,
we will conduct tests where we compress the sample video
files using controlled values for the number of consecutive
keyframes. With this information, we will make charts show-
ing how the compression ratio and the time required to com-
press a file depends on the number of consecutive keyframes
used. With this data, we will draw conclusions about how
to optimally allocate keyframes for different types of videos.
Finally, we will use this information to modify a codec to
better allocate keyframes based on the results we find from
this experiment.

4. PRELIMINARY RESULTS
When conducting our tests, we recorded the relationship

between the number of keyframes used and the compression
ratio. We then placed this information in a table to represent
the relationship between the number of keyframes and ratio
of compression of each video tested. Next, we recorded the
run time to encode the video using the h264 codec for ffmpeg
each number of keyframes, and compiled this information
into the tables displayed below.

4.1 Compression Ratios
Using FFMPEG, we were able to compress the sample

video files with specific numbers of consecutive keyframes,
resulting in a different compression ration each time. This
information displayed in table 1 and graph 1..

4.2 Running Times
We also tracked the time required to compress each file

for each number of consecutive keyframes. We placed this
information in table 2 and graph 2.

5. CONCLUSIONS

5.1 Average Videos
The videos of confetti falling and visual effects only seemed

to benefit from increasing the number of keyframes out to
around 250 frames. Due tot the unpredictable changes in
the video as the confetti falls, it is more difficult to repre-
sent this information using keyframes. Thus, the video has
less reduction in file size form increased use of keyframes.

Figure 4: Graph 2: A graph showing the running
times for the different types of videos with various
numbers of forced consecutive keyframes.

5.2 Running Time
The relationship between the type of video and the time

required to compress the file is less consistent, but there are
a couple of important conclusions to note. First of all, most
videos seem to take the longest to compress at around 400
keyframes, suggesting that we should avoid 400 keyframes
when compressing files. Second, most videos took less time
to compress around 200 and around 700 keyframes. The run
time usually remained low up until 1000 keyframes as well.
Thus, we want to attempt to compress within these values
when possible.

5.3 Algorithim
Using the conclusions described above, we can approxi-

mate the optimal number of keyframes for various types of
videos, as is shown in the table below.

Video Type Optimal Keyframes
Consistent Color 1000

Average Color Change 500-600
Random Color Changes 200-250

We can use this information to improve the quality of
compression employed by MP4 codecs. Since the optimal
number of keyframes depends on how rapidly and randomly
the colors change in the video, we can modify codecs to eval-
uate the change in colors between frames to figure out how
many keyframes to use in different situations. Furthermore,
we can program codecs to break the video into specific sec-
tions, and dynamically allocate keyframes based on what is
optimal for that specific section of the video. A video might
have a title at the beginning, for instance, where the col-
ors stay very consistent. After this, it may contain camera
footage, but specific parts of the footage may contain more
changes in color than others. The codec could choose a num-
ber of keyframes for different parts of the video based on our
conclusions regarding how many keyframes should be used
in certain situations.

To accomplish this task, we have developed the algorithim
displayed in figure 5. For each macroblock in frame A, we
compare it to the corresponding macroblock in frame B. If
they are the same, we increment our counter by 1. After
comparing all the blocks in the pair of consecutive frames,
we divide the counter by the total number of blocks. For
example, if a video had 9 macroblocks per frame, and 2 of



Keyframes 100 200 300 400 500 600 700 800 900 1000
Black Screen 0.03083 0.03068 0.03068 0.03068 0.03068 0.03052 0.03052 0.03068 0.03068 0.03068
Costa Rica 1.844 1.844 1.834 1.867 1.874 2.214 1.870 1.914 1.857 1.991
Confetti Falling 0.06666 0.06634 0.06630 0.06620 0.06621 0.06616 0.06617 0.06614 0.06615 0.06613
Spaceship Landing 0.07894 0.07860 0.07845 0.07845 0.07849 0.07845 0.07849 0.07845 0.0784 0.07841
Greyscale Animation 0.02457 0.02453 0.02443 0.02438 0.02427 0.02435 0.02438 0.02435 0.02448 0.02434
Visual Effects 0.04866 0.04797 0.04771 0.04765 0.04756 0.04748 0.04747 0.04749 0.04749 0.04742

Table 1: A table showing the compression ratios for the different types of videos with various numbers of
forced consecutive keyframes.

Keyframes 100 200 300 400 500 600 700 800 900 1000
Black Screen 1.844 1.844 1.834 1.867 1.874 2.214 1.870 1.914 1.857 1.991
Costa Rica 1365.26 1566.24 1566.24 1359.25 1676.90 998.54 943.57 1396.15 1214.76 1147.02
Confetti Falling 149.25 155.44 154.63 265.48 166.66 182.92 140.84 140.84 140.84 141.50
Spaceship Landing 3.895 3.957 3.947 7.038 5.217 5.567 5.145 4.767 4.876 4.908
Greyscale Animation 214.28 209.84 207.69 235.46 300.00 189.25 352.17 474.23 765.59 189.25
Visual Effects 118.09 118.56 119.03 119.50 119.50 119.50 119.50 121.44 122.43 151.50

Table 2: A table showing the running times for the different types of videos with various numbers of forced
consecutive keyframes.

Figure 5: An diagram of the algorithim used to find
how much the color in the video is changing.

them changed between frames, then we would calculate a
value of 2/9. We would then compare each macroblock in B
to the corresponding block in C, and again count the num-
ber of blocks that changed. If 4 blocks had changed, then
our value for the proportion of macroblocks that changed
between frames would be 4/9.

Once we have calculated the proportion of macroblocks
that have changed between frames, we will allocate a cor-
responding number of keyframes to the video. As was de-
scribed in the previous table, videos with consistent color
compress better with greater amounts of keyframes. Thus,
a video with a low proportion of change in the macroblocks
will be allocated more keyframes. Videos with greater change
in color benefit considerably less from keyframes, and thus
we will allocate fewer keyframes for videos where we calcu-
late greater values for the proportion of macroblocks that
change from one video to the next. We will then repeat this
procedure for each section in the video, as is displayed in
figure 6.

6. FUTURE WORK
The next step in our project, which is currently being

worked on, is to modify a codec to better choose how many
keyframes to use based on the contents of the video. We
are developing an algorithim that samples a video’s frames
and compares how a video’s color changes from one frame to

Figure 6: A diagram representing the process by
which the algorithim analyzes video an allocates
keyframes.

another. Based on this, our code will dynamically allocate
frames.

Another area for future work would be to test the repeat-
ably of these results, and perform more tests for a wider
variety of videos. This might allow one to find more specific
values for the optimal number of keyframes, allowing the
data compression to be slightly more efficient.

Finally, videos with more random patterns of color could
be tested with consecutive keyframes over 1000. The other
types of videos in the experiment did not benefit much from
more than 700 keyframes. The videos with more random
effects, however, were still considerably reduced in size even
around 1000 keyframes. It is possible that the optimal num-
ber of keyframes for that type of video may be even greater,
so future testing should be conducted.

7. REFERENCES
[1] B. Fazzinga, S. Flesca, F. Furfaro, and E. Masciari.

Rfid-data compression for supporting aggregate queries.
ACM Trans. Database Syst., 38(2):11:1–11:45, July



2013.

[2] S. Gringeri, R. Egorov, K. Shuaib, A. Lewis, and
B. Basch. Robust compression and transmission of
mpeg-4 video. In Proceedings of the Seventh ACM
International Conference on Multimedia (Part 1),
MULTIMEDIA ’99, pages 113–120, New York, NY,
USA, 1999. ACM.

[3] J. Katto and M. Ohta. Mathematical analysis of mpeg
compression capability and its application to rate
control. In Proceedings of the 1995 International
Conference on Image Processing (Vol.2)-Volume 2 -
Volume 2, ICIP ’95, pages 2555–, Washington, DC,
USA, 1995. IEEE Computer Society.

[4] D. Le Gall. Mpeg: A video compression standard for
multimedia applications. Commun. ACM, 34(4):46–58,
Apr. 1991.

[5] D. A. Lelewer and D. S. Hirschberg. Data compression.
ACM Comput. Surv., 19(3):261–296, Sept. 1987.

[6] U. Manber. A text compression scheme that allows fast
searching directly in the compressed file. ACM Trans.
Inf. Syst., 15(2):124–136, Apr. 1997.

[7] R. Mantiuk, A. Efremov, K. Myszkowski, and H.-P.
Seidel. Backward compatible high dynamic range mpeg
video compression. ACM Trans. Graph., 25(3):713–723,
July 2006.

[8] K. Mayer-Patel, B. C. Smith, and L. A. Rowe. The
berkeley software mpeg-1 video decoder. ACM Trans.
Multimedia Comput. Commun. Appl., 1(1):110–125,
Feb. 2005.

[9] K. Patel, B. C. Smith, and L. A. Rowe. Performance of
a software mpeg video decoder. In Proceedings of the
First ACM International Conference on Multimedia,
MULTIMEDIA ’93, pages 75–82, New York, NY, USA,
1993. ACM.


