Automating the Organizing Process for PDF Files

Samual Kahsay
Earlham College
801 National Road West
Richmond, Indiana 47374
sakahsay13@earlham.edu

1. ABSTRACT

The progression of technology is exponentiation in almost
all fields. Technology makes many aspects of human life sim-
pler, and less complex. The progress and the intent of inno-
vation within technology/computers has in no way stopped,
however some components within these systems have been
forgotten. File organization is very much still a manual task.
Whether these files are virtual or not the task of organizing
them is equally tedious and labor inducing.There is a lot of
room and need to create a space withing virtual data that

takes the physical labor of organizing.

This paper presents a solution for automating files. The
focus is PDF files in particular, however the general idea and
algorithms used are capable of expanding to many other file
formats. Using and expanding on a Open source program
(tagspaces) that shares the same general idea to make or-
ganizing easier and more automatic. The expansion to the
program includes similarity and metric learning to create
an algorithm and source code for organizing PDFs and files

types.

Keywords: Tagspaces, Java Script, Open source, PDF,

Kernel, Similarity Learning, Metric Learning, Organization

2. INTRODUCTION

As humans, our brains take away the hassle of trying to
organize all the data we take in manually. Color, texture,

temperature, and many other elements are processed by our

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

brain to help us differentiate and categorize. This process is
inherent for the functionality of humans. We move through
varying spectra of light, color, temperature and texture.
This data is then used to process and come to a conclu-
sion, often subconsciously. This process, when translated
for hardware via software, is called similarity learning. Met-
ric learning is the process in which we determine how dif-
ferent relative objects or images are mathematically. This
is better explained of how we as humans define and process
opposites. White is the opposite of black, meaning the dis-
tance between white and black is largest distance and the
color gray would fall in the middle. To translate to a lan-
guage a computer can understand, the abstract distance in
this example is given values to calculate the similarities and
differences between certain elements being tested. The ap-
plications of Similarity Learning can enhance ones everyday

life, by automating most of oneadAZs virtual data.

The motivation behind this project comes from a personal
need to organize my massive virtual data without the tedious
manual labor. This application will be able to bypass the
manual labor and automate the organization of PDF files.
Using machine learning algorithms, to create an application
that organizes PDF files based how similar they are to each
other, creating a folder and placing all the files that are rel-

ative to a number of similarity.

3. RELATED PRIOR WORK

The following categories are separated by algorithms and
open source program considered and included in the result-
ing pdf and file sorting software. These sections on the Ker-
nal Algorithms and Tagspaces’ Open Source documentation
include a synopsis for understanding the base of the pro-
gram. The last subsection is the preliminary results of test
conducted on tagspaces and research applied on the soft-

ware.

3.1 Kernel Algorithms

Kernel Method is the name given to a set of algorithms
for pattern recognition. These algorithms are the ones used
to implement classification, hashing, ranking and regression
similarity learning. This principle for algorithms is used to
find different avenues in finding the patterns between raw
data.

multidimensional system to implement similarity and metric

The Kernel Method gives a base for a cheap and

learning. The algorithms that will be focused on for this ap-

plication are Classification and Ranking similarity learning.

Classification similarity learning is given pairs of similar
+

objects (z;, ;) and non similar objects (z;, x;). Using
the two identities of the vector, a plane is created to place
a given vector such as (xf, 27) with a binary label ;. The
placement within the plane determines whether two objects
are similar or not. This is repeated for every pair of objects

introduced.

Ranking Similarity Learning is the easiest to implement.
The function for Ranking similarity Learning is to use a
initialized triplet input, which is per-ranked as a reference.
The following inputs are then compared to the reference and
ranked according to their similarities. Ranking is a cheaper

and faster product of similarity and metric learning.

4 e
¢
Il 1o e,
&'M tg
&

Wetric Learning

Figure 1: Metric Organization Graph Example [1]

3.2 Tagspaces Open Source

Tagspaces is an open source organizing application. It
uses tags to better sort and find files. Tagspaces works with
multiple file types. In this section we navigate through the
process in which this project incorporated Tagspaces in the
PDF and file sorting component. Tagspaces includes a pre-
view for the files selected and a personal search engine. Us-
ing the source code in this application as a base to start
my personalized PDF organizer. The Source code is in Java
script, and works for windows. The goal, to produce an ap-
plication using the resources and code provided by Tagspaces
while incorporating a machine learning component (Kernel

algorithms) and making it more automated.

& Tagspaces 7 = a x| =
(4] sandbox O+ B8 % @ a &
034-IMG_29263 | paris » [20130805 » | demo - [
) ‘Addon SDK Documentation
bitmessage
a Cafe Wedekind [201208 ~ [restaurant - |
a colours
FocusFree [Leosabauta ~ book+ [car + |

#sandbox~ Demo- 30 filesfound

Figure 2: Tagspaces Layout

Having run Tagspaces and exploring the source code in
windows. The key benefit of using Tagspaces is that it al-

ready has a very defined representational layout.

3.3 Preliminary Results

Test were conducted on the functionality of Tagspaces.
These trial runs tested for a visual understanding of the
algorithm used to run the software, understanding of the
layout, accessibility in terms of complexity and where im-

provement was needed.

Tagspace once downloaded is a standalone program that
mirrors a directory by linking and reflecting all the files
within the directory to the programs window.The main op-
erating function of the program is giving the user the ability
to tag a file and push that tag in the metadata of the file
for better arrangement customized to the users tags/input.
Tagspaces has a large number of other features not found in
other objectively similar software. One very unique feature
is the organizing files by mapping and graphing the place-
ment of the programs within the directory figure (). These
types of features within the program add another layer of
complexities. Tagspaces also has a preview window for some

file extensions such as (pdf, docx, jpg, etc.).

From these test we can conclude, though Tagspaces is a
very well organized and a interactive software with a lot of
features, it doesn’t allow you to be lazy. The complexities
introduced with this software create a better system of or-
ganizing, however the tedious labor of organizing still fall on
the user and not the program. This has shaped the software
the outlook for this project. The application will be one that
asks very little of the user, while still managing to organize

the files according to certain defined criteria. Making it very

distinct from Tagspaces.

4. DESIGN

The personal virtual library requires as much mental and
tedious labor as a physical library. This project hopes to
create a space for an application that can make the virtual
library automatically organized. This will be done by using
certain Tagspaces algorithmic ideas from their source code
and then incorporating a self-designed algorithm based on
the Kernel Algorithms to create a PDF organizer, that is
easy to operate.

This project is composed of two different applications that
work in parallel. The first application organizes files based
on their extension. The second works by reading through
metadata of all the PDF files given as input, then placing

files in folders based on keywords.

The following subsections navigate through the process for
the program. The method, research and algorithm/source
code for the program are the main elements that helped cre-

ate the software.

4.1 Research

The research component consisted of web articles, open
source compatibility searching, and looking for implementable

algorithms using similarity and metric learning.

The articles [1] [2] [3] [8] were used as a base for this
project. These articles were mostly concentrated on similar-
ity and metric learning and or the Kernel algorithms. The
application as is uses a very basic form of similarity and met-
ric learning and the Kernel algorithms. The current demo of
the program is very one dimensional. That being said, the
understanding of the similarity and metric learning compo-
nents of the software is still quintessential to if one wishes

to expand on the current performance.

Image from University of Chicago, Computer Science De-
partment. (http://ttic.uchicago.edu/gregory/pose/psh.html)

Figure 3 illustrates the basic product of metric learning.
The points which in this case represent files are given a grid.
The different sections within the grid will become folders.
The files that exist within that grid then are placed into
that folder.

gon

: (1)
0010 .

L - o .. L . . (2)

0000

(3) (4)

Figure 3: Assigning Files Within a Grid

The seconds aspect of the survey was looking for a open
source program that would be compatible with windows.
Tagspaces was among a short list of other programs, that is
file organization based and open source. Tagspaces though
a great program, is it not perfectly in sync with this project.

The method algorithm and implementation of the Tagsapces

program differs from my program in a lot of key ways. Tagspaces

is used within my program as a reference for metadata search-
ing. The second use for Tagspaces, though it has not yet
been incorporated to my program, is the preview window

implementation for sorted items.

An algorithm with a sudo-code component for similarity
and metric learning was very much needed. The math is
very complex, so having Tagspaces as a base to reference
for my code was a great equalizer. The algorithm created
though does not solely run using similarity and metric learn-
ing, it includes a general and basic mathematical mapping
idea from the Ranking and classification algorithms (illus-

trated in figures 1 and 5).

4.2 Method

Research, reference open source documentation and source
code, preliminary tests all took part in the creation of the
outline of this application. From the outline and general al-
gorithm created by these cases, the process of creating the
actual program became feasible. The process includes ma-
terials such as Java as the main language for the program,
online servers and local servers for compiling and a windows

computer for testing.

Before
Key:

| Directory
I |
v ¥

I 1 1 1 '
BEE OO0 660

Directory

Sub-
Folder

File Organizer Program

After
[Directory |

‘ Dot ‘ ‘ PDF ‘ ‘ Pictures ‘

o '

SO DB 6 B

Figure 4: Mapping the Process of Organizing Based
on Extension

The cluster machines at Earlham College as well as an
online server, which can be found at compilejava.net, were
used to run and compile the program. Initially the pro-
gram was coded using node.js to mirror Tagspaces source
code. However, the Tagspaces and FileSorter algorithm dif-
fered to vastly to work in parallel. From this, code snip-
pets of Tagspaces source code were taken but then converted
to java for better functionality and mobility as a program.
The source file or parts of algorithms used from Tagspaces
to move forward are sections from gettingstarted.js, core.js,

meta.js, fileopener.js, tag.ui.js, and tagutils.js.

The next part was making edits on the source code to
incorporate my algorithm. This took place in file called
FileSorter.java and PDFSorter.java. The File Sorter code
used sections from fileopener.js and code.js from Tagspaces.
PDF Sorter code used tag.utils.js and fileopener.js. These
sections initiated the first element of the program.

The second phase is the process in which the applications
run. FileSorter.java and PDFSorter.java once compiled and
executed become FileSorter.jar and PDFSorter.jar. File-
Sorter when run will prompt the user for a "custom exten-
sion” if the user has none then the simply continue. At this

point the program looks at all the files that live within the

directory, making a list of all the extensions. Once this oc-
curs the extensions are organized and matched a folder. The
folders are created with names of the type of files. The last
step moves all the files to their matching folder. Hard coded
file types include (jpg, html, pdf, docx, etc.).

PDFSorter works with relatively the same processes.This

program is intended to mostly be used a with FileSorter in
sequence. FileSorter creates a folder name "Work Space”
where it will store all the PDF files. From there the PDF-
Sorter will run. Key distinctions form the FileSorter are that
it uses keywords instead of extensions. Using the metadata
the user will be asked to supply keywords as input to search
the metadata. When a keyword is matched with a file, a
folder is created to place the file in. The software will also
have an inventory of keywords hard coded such as (years,
bank statements, assignments, etc.).

Once both programs are done sorting, a message window

will inform the user that their files have now been sorted.

4.3 Algorithm

Their is hand full of source codes that are used, which are

stated above. These programs are in java. The explicable
file shown bellow is in java. The PDFSorter.Jar is the collab-
orative of all the snips taken from the different source codes.
The following codes are sections from FileSorter. The sec-
tions represent the illustrate the process that occurs in the

program.

public static void

process (String ex, String d, String|[] content) {

File tmp = new File(””);
int i = 0;
while (i < content.length) {

if (!tmp.isDirectory () && content[i].endsWith(ex))

tmp = new File (content[i]);
FileOrgnizer .move(tmp. getAbsolutePath (),

+d T ”\\”}+ content [1]);
++i;
}

The Above code is the process section. This is responsi-

ble for comparing and grouping file types. This is looped for

every file in the directory.

public static String createFolder (String name) {
File d = new File (name);
d.mkdir ();
return name;

{

String .valueOf(FileOrgnizer.genrate (tmp. getAbsolutePath ())

The above code creates folders. The Name of the folders are

hard coded or the user can chose to name a custom folder.

public static void

move(String from, String to){
Path From = Paths. get (from, new String[0]);
Path To = Paths.get(to, new String[0]);

try {
Files .move

(From, To, StandardCopyOption.ATOMICMOVE);
}

catch (Exception ex) {
System.err.println (ex.getMessage ());
}

}

The last section moves the grouped files from the process

section into the folders created by the createFolder section.

5. CONCLUSION

Similarity and metric learning has expanded and opened
up a new and innovate space for what computers are capable
of. It produces many applications. The move to the pub-
lic market will produce even more applications in the future.
Snapchat, Iphones and Facebook all have implemented a sys-
tem that deeply embeds and utilizes similarity and metric
learning in different ways. The need to have a automated
file organizing system is one of those applications. Using
these algorithms, one can create a software that is complex
enough to automate the storing and categorizing of ones
personal data the way one would do it him or herself. This
project is the product of that idea. This project creates the
software needed to make once PDF files organize itself. We
are living in the future, so as a result we should not have to

organize our own files.

In conclusion, this project is a creative process in which
one can discover everything can be easier. so why is it not?
This projects aims to make life easier one organized PDF

file at a time.

6. FUTURE WORK

In the future I wish to expand on the types of files this pro-
gram will be compatible with. I wish to run similarity and
metric algorithms on video and music files. This program
now can easily work for a lot of text based files, however
I wish to incorporate image recognition and sound filtering
components to this project. Also, expand on what operat-
ing systems it works on. In the Very near future I will be
working on PDFSorter to get rid of bugs such as (running

but not functioning).

7. ACKNOWLEDGMENTS

This work was supported by the Earlham College Com-
puter Science Department as part of the Senior Seminar
project. Special thanks goes to my adviser Xunfei Jiang
who guided me throughout this project. Lastly, a thank you
to Bret Marshall, a fellow senior computer science major at
Earlham College, who assisted me with figuring out java and
java script along with letting me use his account to run my

programs.

8. REFERENCES

[1] Aurelien Bellet and Matthieu Cord. Similarity and
distance metric learning with applications to computer
vision. N.p., 7, September 2015.

[2] Sumit Chopra, Raia Hadsell, and Yann LeCun.
Learning a similarity metric discriminatively, with
application to face verification. IEEE Computer Society
Conference, 1, 2005.

[3] Andre Elisseeff and Jason Westo. A kernel method for
multi-labelled classification. BIOwulf Technologies, 24,
March 2016.

[4] David G. Lowe. Similarity metric learning for a
variable-kernel classifier. Computer Science Department
University of British Columbia, 25, Nov. 1995.

[5] Kilian Q. Weinberger. Distance metric learning for
large margin nearest neighbor classification.
Department of Computer and Information Science,
University of Pennsylvania, 2005.

[6] Wikipidia. Similarity learning.

[7] Eric P. Xing. Distance metric learning, with application
to clustering with side-information. University of
California, Berkeley, n, 1, March 2003.

[8] Liu Yang. Distance metric learning: A comprehensive
survey. Department of Computer Science and

Engineering Michigan State University, 19, May 2006.

