
Compressing Deep Neural Networks

Tuguldur Baigalmaa
Earlham College

801 National Road West
Richmond, IN, USA

tbaiga13@earlhame.edu

ABSTRACT
Deep neural networks have become an important area of re-
search due to the recent success on a number of recognition
tasks, such as speech recognition, computer vision and nat-
ural language processing. However, the increasing depth,
that comes with increasing accuracy of such models, makes
it both computationally and memory intensive to deploy to
mobile platforms and embedded systems. In this survey pa-
per, we will examine a range of compression methodologies
that can be used to decrease model size and increase run-
time efficiency.

Keywords
Network Pruning; Quantization; Huffman Coding; Hessian
Matrix

1. INTRODUCTION
There is an increasing demand to be able to run deep neu-

ral networks on mobile platforms and embedded systems.
Deploying the model directly to the target platform that
has limited resources has several advantages, such as less
network bandwidth, real-time inference and storage space
reduction. Although most of the compression methodolo-
gies mentioned in the survey paper have been applied to im-
age recognition tasks using Convolutional Neural Networks
(CNNs), such as AlexNet and LeNet, recent research has also
expanded to cover Neural Machine Translation and Speech
Recognition tasks using Long Short-Term Memory (LSTM)
Recurrent Neural Networks since the general concepts are
equally applicable.

2. GENERIC COMPRESSION METHODS
In this section, we’ll explore network pruning, quantiza-

tion, weight sharing and Huffman Coding as generic method-
ologies to compress a neural network.

2.1 Network Pruning
After a training phase, neural networks are typically over-

parameterized with a significant redundancy. Network prun-
ing or weight pruning has been widely researched as a means
to reduce the number of redundant parameters. There are
different approaches to pruning the networks. The initial
naive implementation relied on a magnitude-based approach,
which prunes parameters that have a parameter close to
zero. Among the most popular are the Optimal Brain Dam-
age (OBD)(Le Cun et al., 1989) and Optimal Brain Surgeon
(OBS) (Hassibi and Stork, 1993) techniques, which involve

Figure 1: Network Pruning pipeline.

Figure 2: Synapses and neurons before and after
pruning.

computing the Hessian matrix of the loss function with re-
spect to the parameters, in order to assess the saliencyof
each parameter. Parameters with low saliency are pruned
from the network and the remaining sparse network is re-
trained. However, both OBD and OBS were proven to be
computationally complex especially for larger networks (Au-
gasta and Kathirvalavakumar, 2013). Recent advancement
in magnitude-based network pruning has focused on pruning
parameters that have a magnitude below a certain threshold
to preserve the original model accuracy (Han et al., 2015a).
However, as noted by Han et al., there is a trade-off be-
tween accuracy and the number of the parameters. If too
many parameters are pruned away, the network becomes less
accurate. The trade-off curve is drawn on Figure 3.

The network pruning pipeline outlined on Figure 1 can be
iterated to further compress the network. However, there
is no clear method to determine as to how many iterations
should be run and what the threshold should be in order
to preserve the optimal number of parameters. The average
percentage of zero activations (APoZ) was proposed as a
measure to evaluate the importance of each neuron in a net-
work to address the issue mentioned above. APoZ is defined
as follows:

APoZ(i)
c = APoZ(O(i)

c ) =

∑N
k

∑M
j f(O

(i)
c,j(k) = 0)

N ×M
(1)



Figure 3: Trade-off curve between parameter reduc-
tion and loss in top-5 accuracy of AlexNet.

where f(·) = 1 if true f(·) = 0 if false, M denotes dimension

of the output feature map of O
(i)
c , and N is the total number

of validation examples.
Then, the neurons with an APoZ value larger than one

standard deviation from the mean APoZ are pruned away it-
eratively. However, the researchers were able to reach a com-
pression rate of only 2.59x as compared to 13x (Han et al.
2016) on the standard VGG-16 model while preserving the
original accuracy. However, the statistical approach of prun-
ing redundant neurons still remains as a viable alternative
to other approaches, which involve intensive computational
power and manual tuning. Hu et al. also note that their ap-
proach is tailored more towards using GPU for computation
instead of CPU in Han et al. The most recent paper from
Han et al. has also introduced a computationally efficient
network pruning approach with load-balance-aware pruning
(Han et al., 2016b). Their newly proposed approach involves
dividing the matrix into different sub-matrices, which can be
compressed in parallel.

2.2 Quantization
The stored sparse structure after network pruning is com-

pressed further through quantization. Both network quan-
tization and weight sharing further compress the network
by reducing the number of bits required to represent each
weight. In quantization, weights are represented in 8-bits.
Recently, a more complex quantization routine has been pro-
posed to use the Hessian-weighted distortion measure as a
loss function for quantization errors and has been proved
effective in increasing the compression rate compared to the
results of the Deep Compression pipeline (Choi et al., 2016).
The researchers have managed to preserve the original ac-
curacy, while achieving impressive compression rates. They
have achieved compression rates of 51.25, 40.65. The full
statistics can be seen on Table 1:

However, there is a performance trade-off as it can be com-
putationally expensive to calculate the second order deriva-
tives (Han et al., 2015).

2.3 Weight Sharing
The network is further compressed by having multiple con-

nections share the same weight. k-means clustering tech-
nique is used to identify shared weights for each layer of a
trained network. The weights that fall into the same cluster
share the same weight. Three approaches for centroid ini-
tialization are proposed: Forgy (random), density-based and
linear initialization (Han et al. 2015). Linear initialization
has proven to work the best because there are only a few

Figure 4: Weigth sharing by scalar quantization
(top) and centroids fine-tuning (bottom).

large weights that significantly affect the output variable.

2.4 Huffman Coding
Huffman code is an optimal prefix code commonly used

for lossless data compression(Van Leeuwen, 1976). It en-
codes source symbols with variable length codewords. More
common symbols are represented with fewer bits. Han et
al. note that Huffman coding saves an additional 20-30%
network storage. Choi et al. also confirm the usage of Huff-
man coding, noting that it is one of the most optimal coding
schemes when distribution of a source is provided. Huffman
coding also works especially well in the pipeline, following
uniform quantization.

3. COMPRESSING LSTM
LSTM is a Recurrent Neural Network (RNN) architecture

that has numerous applications in speech recognition and
natural language processing. Although the majority of the
compression research had been focused on traditional CNNs
that are used for image recognition, there have been recent
attempts to compress RNNs using a similar set of method-
ologies (Han et al., 2016b). They create a load-balance-
aware pruning pipeline, as well as, quantizing the model
weights into 12-bit integers using linear quantization strat-
egy. Although the paper in question also addresses hardware
accelerators that could be used to further improve the effi-
ciency of the RNN, it is outside the scope of this paper.
Experimental results indicate that they were able to com-
press LSTM by 12 times without sacrificing accuracy of the
model. See et al. also take on the challenge of compressing a
LSTM. They compress a Neural Machine Translation Model
(NMT) using LSTM. Although their general approach to
network pruning is also magnitude-based, they have tried ex-
perimenting with alternative approaches (class-blind, class-
uniform, class-distribution) and found that class-bind prun-
ing has been proven to outperform other approaches. Class-
blind pruning takes in all parameters, sorts them by mag-
nitude and prunes the x% of the smallest magnitude, re-
gardless of the weight class. As usual, they also retrain the
model after pruning to adjust the weights to accommodate
for the pruned parameters. They were able to compress the



Table 1: Summary of network quantization results with Huffman Coding for pruned models.

Figure 5: Training Shallow Students using the pro-
posed Logit Perturbation Method.

model to achieve a 65.2% reduction in storage space.

4. KNOWLEDGE DISTILLATION
Knowledge distillation is a technique described by Hin-

ton et al. (2015) and involves training a small ‘student‘
network on the outputs of a large ‘teacher‘ network. The
knowledge distillation approach is fundamentally different,
but the main idea is still to reduce the model size by re-
ducing redundancy. Shen et al. have succeeded in creating
a model with 400x fewer parameters while outperforming
AlexNet on a specific dataset Caltech Pedestrian Dataset.
The main idea is to create a smaller network that mim-
ics the behavior of the larger network. As a result of the
sparsely generated network, the student model performs 8x
faster than the teacher with 21x less memory usage. Figure

5 illustrates the process for training the student.
Sau et al. have also demonstrated the usage of knowl-

edge distillation technique for reducing the model parame-
ters. They were also able to achieve compression rate of up
to 33x on the MNIST, SVHN and CIFAR datasets. Another
potentially significant idea they introduce is to train the stu-
dent network on multiple teachers, which could potentially
improve network accuracy even further.

5. CONCLUSION
The recent research on compressing deep neural networks

is finally proving it possible to deploy sophisticated models
into mobile platforms and embedded systems. Research has
been done both on traditional feedforward CNNs, but also,
RNN architectures, which use backpropagation. In both
cases, the general ideas of network pruning, quantization
and weight sharing have proven to significantly reduce the
number of parameters, while preserving original, sometimes
exceeding, original model accuracy.

6. REFERENCES
[1] Song Han, Jeff Pool, John Tran and William J. Dally.

Learning both Weights and Connections for Efficient
Neural Networks. arXiv:1506.02626 [cs], 2015.

[2] Song Han, Huizi Mao and William J. Dally. Deep
Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding.
arXiv:1510.00149 [cs], 2015.

[3] Hengyuan Hu, Rui Peng, Yu-Wing Tai and Chi-Keung
Tang. Network Trimming: A Data-Driven Neuron



Pruning Approach towards Efficient Deep Architectures
arXiv:1607.03250 [cs], 2016.

[4] Yoojin Choi, Mostafa El-Khamy and Jungwon Lee.
Towards the Limit of Network Quantization
arXiv:1612.01543 [cs], 2016.

[5] Abigail See, Minh-Thang Luong and Christopher D.
Manning. Compression of Neural Machine Translation
Models via Pruning arXiv:1606.09274 [cs], 2016.

[6] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin
Li, Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu
Wang, Huazhong Yang and William J. Dally. ESE:
Efficient Speech Recognition Engine with Compressed
LSTM on FPGA arXiv:1612.00694 [cs], 2016.

[7] Bharat Bhusan Sau and Vineeth N. Balasubramanian.
Deep Model Compression: Distilling Knowledge from
Noisy Teachers arXiv:1610.09650 [cs], 2016.

[8] Jonathan Shen, Noranart Vesdapunt, Vishnu N.
Boddeti and Kris M. Kitani. In TeacherWe Trust:
Learning Compressed Models for Pedestrian Detection
arXiv:1612.00478 [cs], 2016.


