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ABSTRACT
Load balancing remains an important area of study in computer
science largely due to the increasing demand on data centers and
webservers. However, it is rare to see improvements in load bal-
ancing algorithms implemented outside of expensive specialized
hardware. This research project is an attempt to bring these inno-
vative techniques to NGINX, the industry leading open source load
balancer and webserver.

In addition to implementing a new, native NGINX module, I
have developed a simple work�ow to benchmark and compare the
performance of available load balancing algorithms in any given
production environment. My benchmarks indicate that it is possi-
ble to take advantage of more sophisticated load distribution tech-
niques without paying a signi�cant performance cost in additional
overhead.

1 BACKGROUND
Ultimately, load balancing is a balls into bins problem: one must
decide how best to distribute m balls into n bins such that each bin
has roughly the same number of balls. Although this may sound
simple, load balancing has remained a di�cult problem in computer
science. The major di�culties are due to the complexities of dis-
tributing tasks with two major unknowns: load and time. Load is a
task’s demand on the server, while time is related to both the dura-
tion of a task and its arrival. In short, load balancing is challenging
because the arrival of a task, how long it will take to complete, and
the computational resources it requires, are never predictable and
always independent of each other.

These factors not only contribute to the complexities of design-
ing load balancers, but they also make it di�cult to model an envi-
ronment for testing them. Furthermore, not all load balancers are
the same. The balls into bins problem shows up in many areas of
computing, everywhere from CPU task scheduling to telecommuni-
cation depends on a load balancer to get work done as e�ciently as
possible. Figure 1 shows the typical architecture for load balancing
in high performance webserver environments.

My research is motivated by improving the performance of load
balancing on webservers because there has not been as much in-
novation compared to work done on the TCP/IP network stack or
operating system schedulers. However, something all these areas
have in common is the underlying statistical model of how tasks
arrive that require distribution. This model is most commonly un-
derstood as a Poisson distribution [1], which is why I use them in my
simulation environments to assign each request a unique weight
representing their arrival time and load on the webservers. Figure 2
provides a visual representation what Poisson streams look like
relative to the arrival times of requests at a given time interval.

Webserver load balancing strategies have hardly changed since
their initial implementations. The two most popular algorithms

Figure 1: High performance load balancing architecture [8].

are random and round robin (RR), the latter having a successful
history in CPU scheduling, time-sharing systems, and DNS. These
approaches work quite well under certain circumstances, but have
signi�cant drawbacks when considering how the internet is used
today. For example, round robin works best only when distributing
requests of a uniform duration. When RR is used as a CPU scheduler,
discrete time quanta are guaranteed, but this is not the case for
a webserver, where requests have an unknown duration and load.
Largely, these disadvantages have been ignored because random
and RR seem to do a “good enough” job and attention is primarily
given to lower levels of networking and operating system design.

However, improving the ability to distribute load as uniformly
as possible has several bene�ts that ought to be considered. For one
thing, a web application spread across multiple servers using an
ine�cient load balancer will result in one or two machines handling
the majority of the requests while others sit nearly idle. When this
happens, it is common to add another server into the environment
because it will make it less likely for a single machine to become
overloaded. This is clearly not the best approach. By utilizing a
better load balancing algorithm, a web application can get the most
out of each available machine without risking a premature upgrade.
But that’s not all, reducing the total number of additional servers
saves a lot of money, maintenance, and energy.

2 PROJECT DESCRIPTION
There are a number of load balancing algorithms that have been
shown to increase the overall performance of webservers when
used in place of random or RR, yet few are ever implemented in pre-
vailing open source projects. The biggest advantage of using RR and
random from a developers point of view is that they are intuitive
algorithms that are easy to implement and maintain. While dedi-
cated hardware load balancers continually take advantage of recent
innovation [8], the open source community has been continually



Figure 2: What a Poisson distribution looks like

left behind. My research is an attempt to bring some of the most
recent and successful load balancing techniques into NGINX, 1 the
leading open source load balancer and webserver.

Of these innovations, the algorithm in particular that I want to
focus on originally comes from Michael Mitzenmacher’s 2001 paper,
The Power of Two Choices in Randomized Load Balancing [6]. In
this paper, Mitzenmacher outlines an algorithm called two-choices,
which behaves exponentially superior to the traditional strategies
like RR and random. Figure 3 illustrates the two-choices algorithm
in what Mitzenmacher presents as the “supermarket model”, where
a customer wishes to enter the least busy checkout queue. The
idea behind two-choices is that the e�cient shopper only surveys
two of the available queues and quickly enters the least crowded
one. The less e�cient shopper painstakingly compares every queue
before making a decision. Mitzenmacher found that by selecting two
random queues, it was possible to avoid the notorious “thundering
herd” problem. If every customer was seeking the least crowded
queue, then at any given time, everyone will be racing towards
a single lane, largely ignoring everything else. Once that queue
�lls up, another one is chased down. With two-choices, multiple
customers are not likely to be directed to the same queue, but they
are very likely to avoid the most crowded one.

The aim of my research project is to study the behavior of these
breakthrough load balancing techniques in a production environ-
ment. To accomplish this I have two goals: (1) Reproduce the work
of Mitzenmacher and others relating to the e�ciency of various
load balancing strategies. (2) Implement two-choices as an NGINX
module and test it against the other available load balancers.

3 EXPERIMENTAL SETUP
This project was initially inspired by a talk given by Tyler Mc-
Mullen, titled Load Balancing is Impossible [5], where he outlines
1https://nginx.org

Figure 3: The two-choices load balancing algorithm as de-
scribed in Mitzenmacher’s paper.

the challenges load balancers face when dealing with the web as
we know it today. I began my research by expanding the initial
simulations given in his talk and soon I was able to construct an en-
vironment where I could reproduce the work presented in research
papers regarding the two-choices algorithm.

I conducted my load balancing experimentation using an IPython
notebook [7] running inside a python virtual environment because
it enables portable and cross platform development. Using a Pois-
son stream with a mean of 0.99 as my request distribution model,
I assigned a weight to each request to represent its arrival on the
server. In the IPython notebook I model the load balancing in the
following way: There is a list of length n representing the requests
and a list of length m representing the available servers. The re-
quests are passed to a load balancing algorithm which increments
a counter belonging to a particular server by that request’s weight.
After all requests are distributed, the standard deviation of requests
among each server is compared between algorithms. A perfect load
distribution would therefore have a standard deviation of zero.

The algorithms I implemented were random, round-robin, and
two-choices: Random chooses a server for each request indepen-
dently and uniformly at random, RR distributes the request to each
server one by one, and two-choices �rst selects two servers indepen-
dently and uniformly at random and then chooses the server with
the least load to process the request. Figure 5 provides minimal algo-
rithm implementations used in my initial testing environment and
gives a better sense of how my IPython simulation was organized.

The later stages of my research was done using special con�gu-
ration �les that allow my load balancing module to be dynamically
linked to the system installation of NGINX. In addition, I utilized the
Go programming language 2 to build a webserver which compiles
into a native binary for execution on multiple machines and ports.
All of the software components used in my research are provided
within a single organized git repository. 3

2https://golang.org/
3https://github.com/anschwa/capstone
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Figure 4: Software architecture for running simulations
with NGINX.

3.1 NGINX Module Development
I developed two load balancing modules for NGINX: random and
two-choices. The underlying load balancer for NGINX is RR, but
it also provides a module called least_conn, which will distribute
requests giving preference to the server with the least connections
currently established. The two-choices module is implemented by
incorporating the functionality provided by least_conn and my
new random module. Both modules are compiled and dynamically
linked into the system installation of NGINX because it makes devel-
opment much easier. However, both modules can can be statically
linked if desired. Although NGINX provides an API for writing mod-
ules in perl, I chose to implement them directly in C to eliminate
any potential overhead that may skew the results. I also consider
native NGINX module implementations more useful to the open
source community.

In order to test the e�ectiveness of the load balancing algorithms,
I created a simple webapp in Go that will simulate my production
webserver environment. Go is an excellent language to use for this
task because it has an extensive HTTP package in the standard
library, compiles to native machine code, and does not need any
additional dependencies to host a webserver.

The Go webapp generates a Poisson random number for each
incoming request. This number is then used to determine how long
the webapp will sleep for before sending back a response. I do
this to simulate the unpredictability of request duration and load
on the server. I chose to model my webserver environment with
the Poisson process because it is well understood and commonly
used to model the behavior of internet tra�c. Naturally, this will
not provide an accurate model for all production web applications,
however, I have produced a work�ow for benchmarking the per-
formance of all NGINX load balancers, including two-choices, on
any given system. This work�ow will allow anyone to observe the
performance of each algorithm in their own production environ-
ments. Figure 4 depicts the entire benchmarking work�ow and the
general software architecture of this project.

import numpy as np
import numpy.random as nr

rate = nr.poisson(0.99, requests)
DIST = [(w * 0.1) + 1 for w in rate]

def uniform_random(requests, servers):
rand = nr.randint(low=0, high=servers, size=requests)
load = [0] * servers
for i in range(requests):

weight = DIST[i]
chosen_server = rand[i]
load[chosen_server] += weight

return np.std(load)

def round_robin(requests, servers):
load = [0] * servers
for i in range(requests):

weight = DIST[i]
chosen_server = i % servers
load[chosen_server] += weight

return np.std(load)

def two_choices(requests, servers):
load = [0] * servers
for i in range(requests):

choice_one = nr.randint(0, servers)
choice_two = nr.randint(0, servers)

if load[choice_one] < load[choice_two]:
best_choice = choice_one

else:
best_choice = choice_two

weight = DIST[i]
load[best_choice] += weight

return np.std(load)

Figure 5: Simpli�ed Python Implementations

3.2 Apache Bench Testing Strategy
The industry standard tool for benchmarking and measuring web
server performance is a command line utility called Apache Bench, 4

or ab. The interface is quite simple, it allows you to specify how
many total requests to send to a website and how many should be
made concurrently. After sending the requests, abwill provide some
useful information such as the total time to complete the requests,
requests processed per second by the webserver, and the average
time spent per request. I use these metrics to gauge the performance
of the load balancers on NGINX in addition to graphing the latency
of each request in the benchmark.

4https://httpd.apache.org/docs/2.4/programs/ab.html

3

https://httpd.apache.org/docs/2.4/programs/ab.html


Figure 6: IPython notebook simulation results for random,
round robin, and two-choices.

4 RESULTS AND DISCUSSION
4.1 IPython Simulation Results
My initial simulations rea�rmed the results presented by Mitzen-
macher. When requests are weighted, the standard deviation of
two-choices approaches zero as the amount of requests being pro-
cessed increases. As Figures 6 indicates, RR does much better than
random, but has an increasing standard deviation as requests in-
crease. Figure 8 highlights an important observation: RR always
completes in the least amount of time, whereas two-choices takes
more than twice as long to run. Also worth noting is that when
the number of servers are increased, RR performs more similarly
to two-choices, however, Figure 7 con�rms that two-choices is
clearly better at maintaining a uniform distribution of requests
across all available servers. Although my experiments rea�rms
that two-choices is the superior algorithm as far as load distribution,
the results raise an important question: How will the overhead of
two-choices a�ect the latency of a production webserver?

Figure 7: A closer look at the load distribution capabilities
of round robin and two-choices.

8 Servers:
Random: 410 ms ± 79 ms per loop
Round Robin: 371 ms ± 18.5 ms per loop
Two Choices: 826 ms ± 171 ms per loop

800 Servers:
Random: 414 ms ± 53.9 ms per loop
Round Robin: 381 ms ± 24.5 ms per loop
Two Choices: 784 ms ± 9.04 ms per loop

Figure 8: Latency of random, round robin, and two-choices
in IPython simulation using the timeitmodule with format:
(mean ± std. dev. of 7 runs, 1 loop each).
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4.2 NGINX Simulation Results
My extensive benchmarking revealed no obvious distinction be-
tween load balancing algorithms running in NGINX. Regardless of
the active module, performance remained about the same. How-
ever, there were some general trends regarding concurrent and
total requests that were anticipated, namely, when you �ood your
webserver with requests, it takes longer to respond.

What these results do indicate, is that the overhead of a load
balancer may become negligible when taking into account the total
overhead associated with completing an HTTP request. In the ear-
lier simulations with python, I was concerned that the increased
latency of two-choices would make it an inconvenient load bal-
ancer in a production environment. However, my results show that
we may be able to take advantage of two-choice’s uniform load
distribution abilities without paying much performance penalty.

Yet, the lack of a clear distinction in algorithms is a concern. It is a
good indication that my experimental environment is not capable of
simulating the conditions necessary to make high performance load
balancing observable. I’m not completely dismayed because using
ab to benchmark webserver performance is an industry standard.
Although, employing a custom benchmarking technique for these
experiments may have produced more obvious results. With that
being said, I’m still con�dent in the viability of two-choices as a
load balancer after running these experiments.

Additionally, the machine running all simulations can only launch
up to 8 webservers, each processing up to 100 concurrent connec-
tions from ab. 5 While it is possible that the load balancing mod-
ules need to be tested with an NGINX con�guration containing
hundreds of servers, it may be an unrealistic expectation. When
I initially contacted the NGINX mailing list about my research
project, lead developer Maxim Dounin responded that algorithms
like two-choices have never been considered for implementation
because it was unlikely to e�ect performance unless one was using
NGINX in a very large computing environment. 6

Most of my �ndings are summarized by Figure 9. When the
number of concurrent connections are kept relatively low, each
load balancing module behaves nearly identical. However, as we
increase the concurrent connections, we see that the vast majority
of requests are completed under 500 ms, but approximately 5% of
requests take thousands of milliseconds longer to complete. This
behavior is a known issue with using Apache Bench, but it also
addresses the problem load balancing attempts to solve. That is,
once a webserver becomes overloaded, it is very hard for it to
recover.

The stair-step pattern represented in these graphs unsurprisingly
correspond directly with my Poisson distribution. Each incoming
request will spend either 0, 100, 200, or 300 ms on the webserver
before getting a response. The fact that we can visualize the Poisson
stream almost exactly is another indication that the overhead of
load balancing is negligible under these testing conditions and
NGINX.

5Macbook Pro: Intel(R) Core(TM) i5-4288U CPU @ 2.60GHz, 16 GB 1600 MHz DDR3.
6“As far as I understand, power of two choices might be bene�cial if you need to optimize
time spent on comparing the load on di�erent balanced servers, for example, when
balancing very large number of servers. Or when trying to do distributed balancing
with multiple load balancers, and query loads directly from balanced servers.” (2017-
09-27)

Figure 9: Each load balancing algorithm has near identical
performance in NGINX according to the ab results.

In order to get a better sense of these seemingly homogeneous
results, I constructed another visualization for examining the mini-
mum, maximum, and average request latencies of each algorithm.
It is possible to observe some additional trends using these new
charts. Figure 10 rea�rms that under lower concurrency levels,
performance is pretty uniform between algorithms. However, it
remains unclear if any algorithm is superior under high levels of
concurrency. While it appears two-choices may occasionally have
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Figure 10: Under low levels of concurrency, there are less
outliers so it’s possible to see the slight variations in perfor-
mance.

an advantage, Figure 11 serves as a reminder how a few latency
outliers from Apache Bench can skew the graphs signi�cantly.

Figure 12 gives a more complete overview of the ab benchmark-
ing results from the simulations. While it is certainly true that
higher concurrency levels increase the overall latency of the NG-
INX server, the median and mean latencies are not heavily e�ected.

5 RELATED AND FUTUREWORK
Overall, I’m excited by the outcomes of my capstone research
project. If I continue running experiments on more sophisticated
server environments I hope to get a more re�ned result set that
will lead to a better understanding of NGINX load balancing per-
formance. I plan to contribute my two-choices module upstream
to the NGINX project as well as respond to any feedback I may
get from the other open source developers. Additionally, it would
be worthwhile to gather more data and research production web
application server load more thoroughly. The Poisson distribution
is a great statistical model for a proof-of-concept, but my research
would de�nitely bene�t from a richer statistical dataset. Load bal-
ancing for the most part is primarily a concern for large companies
and data centers. For this reason, much of my background research
involved learning how the big tech companies are approaching
this problem. The prevailing strategies to the load balancing prob-
lem usually involves optimization deeper within the networking
stack, where the problem can be more discretely de�ned and more
generally applied.

5.1 Microsoft’s JIQ
Join-Idle-Queue is the latest and greatest load balancing algorithm.
It was developed by Microsoft and achieves greater performance
than two-choices and another competing algorithm called join-
shortest-queue. However, JIQ does not introduce communication
overhead on the servers. This is achieved by only using local in-
formation about server load. The idea behind JIQ is to “decouple
discovery of lightly loaded servers from job assignment” [3]. This

Figure 11: Although ab is a great benchmarking tool, results
are often inconsistent due to a few outliers.

algorithm concurrency min mean [+/-sd] median max
control 10 1 107 123.6 103 1351
round_robin 10 1 106 102.5 105 607
least_conn 10 0 103 102.4 105 605
random 10 1 106 103.8 104 707
two_choices 10 0 101 100.6 104 603

control 50 1 108 103.0 103 613
round_robin 50 1 245 742.1 111 7187
least_conn 50 1 109 185.2 104 7100
random 50 1 187 321.4 118 3047
two_choices 50 1 146 257.6 106 4473

control 100 1 164 205.1 118 3186
round_robin 100 1 194 559.5 108 14004
least_conn 100 1 177 416.8 119 11747
random 100 1 212 559.0 132 13673
two_choices 100 1 187 334.4 115 3340

Figure 12: Raw ab statistics for 8 Servers and 4,000 total re-
quests
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is achieved through utilizing idle CPUs to make the load balancing
decision. JIQ out-performs the competing advanced load balancing
algorithms and much like my results, Microsoft notes that these
load balancing strategies are most noticeable under extremely high
server load.

5.2 Google’s BBR
BBR stands for Bottleneck Bandwidth and Round-trip propagation
time. It is a new congestion control algorithm developed and de-
ployed by Google for increasing the throughput of TCP [2]. The
purpose of the algorithm is to measure the current bottleneck of the
network and only send enough data to “�ll the pipe”. The success of
the algorithm comes from measuring network congestion in terms
of its bottleneck instead of packet loss, which is how it is tradition-
ally done. Additionally, it was found that maximum throughput is
achieved when the loss rate was less than the inverse square of the
bandwidth delay product (BDP). BBR is already implemented in the
Linux kernel for TCP.

5.3 Facebook’s Egress
Egress is a process for evaluating network latency and congestion
through “performance aware routing” on Facebook’s network [9].
The Egress paper explains some key elements of running a network
on a massive scale that minimizes congestion. What Google did with
TCP congestion, Facebook did with the border gateway protocol
(BGP); they made it “capacity and performance aware”. Essentially,
Facebook had to optimize its point of presence (PoP) servers to have
highly e�cient routing algorithms by establishing shorter paths,
to deliver content to its billions of users. This paper illustrates a
common theme that traditional implementations of networking
protocols are no longer su�cient.

5.4 Linux Socket Balancing: Epoll-and-Accept
An interesting problem about NGINX was discussed by Marek
Majkowski of CloudFlare, where he examines how Linux schedules
connections to sockets [4]. NGINX, like many applications may
create multiple worker processes to increase performance at scale.
On Linux, these processes communicate over sockets. On NGINX,
a single socket “listens” for new connections and then distributes
them to one of the available worker processes. This behavior is
exactly like the load balancing discussed in this paper, except that
instead of processing a request on another webserver, at this level,
NGINX distributes new connections among OS processes. It is also
possible to have a model where there are multiple listening sockets
and multiple worker processors. Unfortunately for Linux, when
distributing connections between sockets using epoll() to avoid
blocking on the accept() system call, the scheduling behavior
becomes Last-In-First-Out (LIFO). That is, the busiest process will
be selected most often. Just like the thundering herd problem, this
results in an unbalanced worker process load and a decrease in
NGINX performance. However, by setting the SO_REUSEPORT socket
option, each worker process will have a more uniform load at the
cost of higher latency.
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