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ABSTRACT
There has been a lot of attempts in building predictive models that
can correctly predict the stock price. However, most of these models
only focus on different in-market factors such as the prices of other
similar stocks. This paper discusses about the efficiency/accuracy
of three different neural network models (feedforward, recurrent,
and convolutional) in predicting stock prices based on external
dependencies such as oil price, weather indexes, etc.
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1 INTRODUCTION
1.1 Outline of the paper
Section 1 is used to provide a brief outline of the paper, as well as
discuss goals and results of this project. In order to help the readers
to have a better understanding about the models involved in this
paper, Section 2 is used to introduce some of the most fundamental
concepts and definitions that will be used in this paper. Section 3 is
devoted for introducing current advancement in stock prediction
methodologies. Section 4 talks about the software architecture used
in this project, with the results and discussions in section 5. Section
6 is the conclusion and future work.

1.2 Assumptions and goals
In this paper, I am assuming that there is a strong correlation be-
tween the oil price and the oil company’s stock price (specifically
Exxon Mobil). However, the project is implemented in a way that
can easily be scaled with various number of input features, not
limited to one. This paper will try to see if the correlation is strong
enough that we can predict the stock price trend, and also exam-
ine the accuracy of three different basic neural network models in
doing this task.

2 TERMINOLOGY AND DEFINITIONS
In order to follow this paper, some fundamental knowledge about
neural network models and machine learning in general is advised.
Following are some terminologies and definitions that will help the
readers to better understand the project.

2.1 Machine Learning and Statistical
Classification

In the field of computer science, machine learning is the study
of algorithms that can learn and make predictions from data, not
from strictly static program instructions. In other words, machine

Figure 1: Support Vector Machine [3]

learning gives the computer the ability to learn without being
explicitly programmed.

In the field of machine learning, statistical classification is the
problem of assigning a new observation into a category based on a
training set of data where the category is known. Classification is
an example of pattern recognition. An algorithm that implements
classification is known as a classifier, which map input data to a
category.

Supervised learning is the machine learning task of inferring a
function from labeled training data, meaning that the training data
consist of a set of training examples. The training data set normally
include pair of input and desired output. The algorithm analyzes
the training data set that was given and then can be used to map
new examples.

2.2 Regression Analysis
In statistical modeling, regression analysis is a process for estimat-
ing the relationship among variables. In other words, regression
analysis helps us to study how the value of a dependent value
changes when we vary one independent variable while keeping the
other independent variable constant.



Figure 2: A simple feedforward neural network [2]

2.3 Support Vector Machine
Support vector machines (Figure 1) are supervised learning models
that analyze data used for classification and regression analysis.
SVM (support vector machine) is a binary linear classifier, which
means it’s mainly used to classify its inputs into one of two different
classes. More specifically, an SVM model constructs a hyperplane,
or multiple hyperplanes in order to classify its input into groups,
thus providing some useful applications such as outliers detection.
Besides performing linear classification, SVM can also perform non-
linear classification using a kernel method, implicitly mapping their
inputs into high-dimensional feature spaces.

2.4 Feedforward Neural Network
Feedforward Neural Network (Figure 2) is the most basic neural
network model that uses back propagation to adjust the weights
while training. It was the first and simplest type of artificial neural
networks devised. A feedforward neural network tries to mimic
what we currently know about a human neural network, with one
or multiple hidden layers. Each connection in the model has its
own weight and bias, which determine its significance toward the
finally output.

2.5 Recurrent Neural Network with Long
Short-Term Memory (LSTM)

Recurrent Neural Network (Figure 3) is a neural network model
where connections between units form a directed cycle. Unlike
feedforward neural networks, recurrent neural networks can use
their internal memory to process an arbitrary sequence of inputs,
which means the inputs'sizes doesn't have to stay constant. This
makes the model very efficient when dealing with languages or
time series data.

Long short-term memory (LSTM) can be seen as a very simple
neural network that can be used to build a more complete and
more complex recurrent neural network. It composed by four main
components: a cell, an input gate, an output gate, and a forget gate.
As the name suggest, LSTM is responsible for remembering values
over arbitrary time intervals. This ensures that the recurrent neural
network that is using LSTM is able to remember values that is
significant but avoid storing every values which is very inefficient
and would reduce the efficiency of the model.

Figure 3: A recurrent neural network with LSTM [4]

Figure 4: A long short term memory block [4]

Figure 5: Convolutional Neural Network [1]

2.6 Convolutional Neural Network
Convolutional Neural Network (Figure 5) is a class of deep, feed-
forward artificial neural networks that has successfully been applied
to analyzing visual imagery. However, the application of Convo-
lutional Neural Network can be found in different field such as
music, art, etc. by converting the input into a stream of pixels. This
trick enables us to turn music sheets into images, thus giving the
network the ability to analyze and even reproduce music that is
similar to the input.

In the most basic form, a convolutional neural network has four
significant parts: inputs, feature learning, classification (by using
fully-connected layers similar to a feedforward neural network),
and outputs. As the name suggests, the feature learning part tried
to detect significant features that is useful for the classification
problem that it’s trying to solve. This is done by applying two
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different methods on the image called pooling and convoluting.
Their main use is to simplify the image, thus making it much easier
to detect trends, edges, etc.

In the end, a fully-connected layer is applied in order to transform
the result from the feature learning part into output. For example,
a model that is specialized in detecting if a cat is in an image would
produce two outputs: the percentage that a cat is in the image, and
the percentage that a cat is not.

3 CURRENT ADVANCEMENT IN STOCK
PREDICTION METHODOLOGIES

3.1 Using support vector machine model
Huang et al. [5] and Yang et al. [8] both discusses the possibility of
using Support Vector Machine to predict stock market movement
direction.

Per Huang [5]), Japanese's economy growth has a close rela-
tionship with Japanese export, which in turn makes the United
States's (Japanese's main export target) economic condition deter-
mines Japan economy. The USA's economy is represented by the
S&P 500 Index, while Japan economy is represented by the NIKKEI
225 Index. In this experiment, S&P 500 Index is served as input
for the Support Vector Machine model. To evaluate the forecasting
ability of SVM, the authors use the random walk model (RW) as a
benchmark for comparison. They also included linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA) and elman
backpropagation neural networks (EBNN). A combined model is
also developed using different weights for different classification
method. The result is fascinating, with SVM's hit ratio was around
73%, the highest compare to another method. The combined method
has even higher hit ratio with 75%. This is very impressive and prove
their initial assumption, that is the Japanese and US’s economy are
heavily dependent on each other. Since the authors only applied
their model to S&P 500 Index and KIKKEI 255 Index, it does not
actually predicting stock prices but rather the overall movement
of the whole market. However, it begs the question of how well
would these models work in predicting stock prices or stock trend.

Yang et al. [8] try to apply Support Vector Regression (SVR) to
financial prediction tasks. They propose an improved model based
on a normal SCR model, which consider margins adaptation. When
using SVM in regression tasks, the SVR need to use a cost function
to calculate the risk to minimize the regression error. The margin
used by those function is very important because when the mar-
gin is zero and very small, it is possible to over-fit the data with
poor generalization. On the other hand, if the margin is too high,
one run into the risk of having higher testing error. For financial
data, because of the embedded noise, one must use a suitable mar-
gin to obtain a good prediction. Two experiments were conducted
to illustrate the effect of FASM (Fixed and Symmetrical Margin),
FAAM (Fixed and Asymmetrical Margin), and NASM (Non-fixed
and Symmetrical Margin). Through their finding, they concluded
that in financial applications, setting a suitable margin is critical to
the performance of the prediction tool used.

3.2 Using modular neural network
Kimoto et al. [6] discuss a buying and selling timing prediction sys-
tem for stocks on the Tokyo Stock Exchange and analysis of internal

Figure 6: Fuzzy neural network architecture [7]

representation, using a modular neural network algorithm. The
input consists of several technical and economic indexes, including
some neural networks learned the relationships between the past
technical and economic indexes and the appropriate buy/sell time.
A prediction system that is made up of modular neural networks
was claimed to be correct, with the simulation of buying and sell-
ing stocks using the prediction system shows an excellent profit.
Below is the graph that the authors used to describe the overall
architecture of the prediction system. Using different indexes such
as turnover rat, foreign exchange rate, etc. the data is then passed
to a preprocessor before passed on to neural networks to predict
the right time to buy and sell stocks.

The authors use high-speed learning algorithm called supple-
mentary learning, which is based on the error back propagation.
The algorithm automatically schedules pattern presentation and
changes learning constants when needed. In supplementary, the
weights are changed according to the sum of error signals after
presentation of all learning data.

3.3 Genetic algorithm based fuzzy neural
network

Kuo et al. [7] developed a genetic algorithm based fuzzy neural
network (GFNN) to formulate the knowledge base of fuzzy inference
rules which can measure the qualitative effect (e.g., political effect)
on the stock market.

The methodology the authors used is described in figure 6. This
study develops an intelligent stock trading decision support system
based on the viewpoint of system integration. There are three main
parts in this model: factor identification, qualitative model (GFNN),
and decision integration.

4 SOFTWARE ARCHITECTURE
4.1 Overview
This project assume that there is a strong correlation between the oil
price and the Exxon Mobil stock price, thus tries to derive different
predictive models to predict the stock price based on the oil price.
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Figure 7: Software architecture

The project has three main parts: data collection and process,
creating and training predictive models, and testing these models.
The first part, data collect and process is pretty self-explanatory,
include collecting data of oil prices and Exxon Mobil’s stock prices.
The second part derives three different predictive models (feedfor-
ward, recurrent, and convolutional neural network) using the data
from the first part to train and test. The last part utilizes the models
developed in the second part to test on the real world data by using
two different methods: an accuracy score and a backtest pipeline.

The project was written in Python using Tensorflow, pandas,
numpy module and matplotlib module to plot images. Backtrader
module was also used in the project to implement the testing
pipeline that determine the efficiency of the models.

4.2 Data collection and process
For this project, the two data sources that was used are the oil
price of the last 25 years and the stock price of Exxon Mobile, one
of world's biggest oil company. The theory that I wanted to test
was that based on the oil price, we can predict the general trend of
the stock price using different neural network models, as well as
compare the effectiveness of these models.

The data set is split into two subsets: training set (3/4 of the
data points) and testing set, which contains the rest of data points.
The training set would be used for training and optimization of
the models, while the testing set is used to determine the model's
accuracy. It is essential to separate the training and testing data
sets, since this will help us to avoid the problem of false positive,
thus increase the credibility of the accuracy score.

4.3 Introduce lag into the models
Because this is a predictive model, it is important to introduce lag
into the model. Lag is simply a fixed period of time that in theory
reflect the amount of time it takes of the input features to affect

the stock price. To determine the best lag possible, I repeatedly
train the models with different lags ranging from 1 to 60 days. To
fast-track the learning process, I slightly increased the learning rate
of the model. By doing this, the model would be able to learn much
faster, but is prone to several problems such as local minimum, etc.
However, since I only want to get the general idea of how well a
lag would perform regarding the predictive results, increasing the
learning rate is acceptable in this case.

Once an optimal lag is determined, I proceed by saving the lag
to the disk, which would be handy during the back-testing phase.
The lag is then introduced into the model during the actual training
phase by realign the training data set. This in theory will give the
model just enough information that it would have to predict the
stock price.

4.4 Models implemented
4.4.1 Feedforward Neural Network. First model used was a sim-

ple feedforward neural network. Since feedforward neural network
can only accept a fixed size input, we had to feed the model each
data point separately in both training and testing phases. The idea
behind this model is to try to find the correlation between the in-
put feature and the output, assuming that the correlation is strong
enough for us to predict the stock price in the future using the
feature data points and the lag between them.

The learning rate is fixed at 0.001 and multiple instances of the
model were created. Since the initial weights were created randomly,
it is important to repeat the training phase multiple times in order to
get the best result possible. I used rectified linear unit the activation
function and mean square error (MSE) as our loss function. MSE is
widely used as the loss function in predictive model.

4.4.2 Recurrent neural network with LSTM. The next model im-
plemented was a convolutional neural network with long short
term memory. Because of the nature of this model, it is ideal to

4



Figure 8: Data preparation for the convolutional neural net-
work

Figure 9: Feedforward neural network predictions

deal with continuous series of data, which is exactly what we have
here. This model is expected to outperform the feedforward neu-
ral network because this model can take into consideration the
relationship between different data points.

Because this model excels at working with time series inputs,
the input features are divided into small chunks consist of five
days data, since the market is open five day a week. Notice that
this approach is different from the approach that we took for the
feedforward model, where the inputs were single data points. This
allows the model to use the long short term memory to potentially
figure out the correlation between the data points in the series.

The setup for this model is very similar to the feedforward neural
network, with the learning rate fixed to 0.001, and MSE was used
as the loss function.

4.4.3 Convolutional neural network. The last model used was a
Convolutional Neural Network. Even though Convolutional Neural
Netowrk (CovNet) is used primary in the computer vision field, it is
still worthwhile to explore its potential as a stock prediction model.
Since it requires picture(s) as input, it was necessary to turn the
input data into stream of pixels. To achieve this, I turn the input
data into chunks of 20 data points and then turn them into a 4
dimensional arrays (since that’s what an image is). A simplified

Figure 10: Recurrent neural network predictions

version is demonstrated in figure 8. The output used for training is
an array of 20 data points.

I have also added a dropout rate of around 20%. A dropout rate
is used to mimic the dead neurons that can be found in our bio-
logical brain, and serves as a regularization technique for avoiding
overfitting by preventing complex co-adaptations on training data.

4.5 Determine models’ accuracy
I implemented two different methods to determine the model's ef-
fectiveness: an accuracy score and a backtest pipeline. An accuracy
score is calculated by running the model on a testing data set and
consider any output that is $5 within the actual stock price as cor-
rect. The second method want to measure how well the model can
work in the real world. In order to implement the backtest pipeline,
I used Python module Backtrader and develop different strategies
that can utilize the model’s prediction. The pipeline will have the
ability to sell or buy stock without knowing the actual stock price
and only knowing the prediction of the model. The strategies that I
developed for these models are very simple and basic, but should
serve as a good baseline to compare the three models results.

5 RESULTS AND DISCUSSION
5.1 Feedforward Neural Network
The Feedforward Neural Network produced some encouraging
results, with the shape of prediction line somewhat follow the trend
of the real stock price (Figure 9). The average accuracy for the
model is only 12%, with the highest accuracy score recorded was
30%. The reason that the accuracy score changes between runs
is because all initial weights and biases were randomized at the
beginning, so it makes sense that the performance of the model
will change depends on the initial values. Figure 9 also shows that
even though the prediction follows the real stock price relatively
closely but react very strongly when there is an apparent strong
change in the trend of stock price.

When using the backtest pipeline, I implemented a virtual broker
that ask for 2% commission to make the transactions more realistic.
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Table 1: Models’ accuracy score

Model Average accuracy score (%) Highest accuracy score (%)
Feedforward Neural Network 12 30

Recurrent Neural Network & LSTM 23 50
Convolutional Neural Network 0 0

Table 2: Models’ backtest results

Model Average backtest result ($) Highest backtest result ($)
Feedforward Neural Network 99 900 100 400

Recurrent Neural Network & LSTM 100 390 110 500
Convolutional Neural Network 100 000 100 000

Figure 11: Convolutional neural network predictions

The initial cash amount for all models are $100 000. In this model,
in the course of roughly last 7 years, the model is in average end up
with the total amount of $99 900, which means the model actually
lost money during the backtest process. However, the best run
actually end up with $ 100 400, making a profit of $400.

5.2 Recurrent Neural Network with LSTM
The Recurrent Neural Network with LSTM produces the best result
out of the three models, scored in average 23% in accuracy score
and 50% in the highest run. This makes sense since recurrent neural
network is specialized in working with time series data and is
perfect for this problem. However, as figure 10 indicates, there are
definitely a lot of similarity in the result of this model compared to
the feedforward’s results as the general shapes of the two are very
similar. The explanation is because they both have the same input

feature data points (oil price), the result adopts the general shape
of the input, thus resulting both outputs to have similar shapes.

Using the backtest pipeline with the same values as I used for
the feedforward neural network, the model perform much better
than expected. The average result is $100 390, which makes the
average profit of $390. The highest profit that the model managed
to produce was $10 500, which is more than 10%. Keep in mind that
the strategy developed is very conservative and always choose to
play safe, which means this model has a lot of potential.

There is also one very interesting phenomena happened in the
result of the model, that is the shape of the result has a repeated
pattern as in figure 13. This teeth-like pattern repeats throughout
the whole prediction results, which suggests one of the two possi-
bilities: it is an artificial product or there is actually a pattern that
is happening in the input feature data points. It makes sense if it is
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Figure 12: Backtesting result from applying feedforward model

Figure 13: RNN’s result teeth pattern

a product of a pattern in the feature data points as the input was
divided into chunks of five days, which represents weekly values
of input and output data points. However, since the pattern is very
consistent, it is very likely to be an artificial product and need to
be fixed in the future.

5.3 Convolutional Neural Network
The Convolutional Neural Network performed the worst out of
the three models. As figure 11 suggests, the result predictions are
very unstable does not very useful in predicting the stock price.
Thus the highest accuracy score is 0%, which also means the mean
average score is also 0%. This is disappointing but understandable,
since convolutional neural network was built in order to process
complex images, not data points. Since the backtesting pipeline
implemented was very conservative, it did not buy or sell any stock
during the whole 7 years, which means the final amount of money
remains $100 000. This is some optimizations/changes that can in

theory help the model to produce a better result, which I will talk
about in the future work.

6 CONCLUSION AND FUTUREWORK
Stock price prediction has always been seen as nearly impossible
and provides a lot of challenges. However, it did not stop many
people to try out different techniques trying to predict how the
stock price will react when a known variable is changed (weather
indexes, oil price, etc.). In this paper, I tried three very basic neural
networkmodels in order to compare their effectiveness in predicting
stock price and get some very interesting results. Feedforward
Neural Network, despise its simplicity, performs rather well and
was able to make a small profit of 0.3%. A recurrent neural network
outperform feedforward neural network with a profit of around
10%. The disappointing model was convolutional neural network
which produced 0% profit.

The following things are things that I did not have enough time
to implement, but should in theory help the models perform much
better.

6.1 Dynamic learning rate
Right now for all three models the learning rate is fixed at 0.001.
This is known as a good learning rate for a neural network since it is
extremely important to not set it too high, as the model will stuck in
local minimum, or set it too low as the model might never converge.
However, by implementing a dynamic learning rate (High at the
beginning and low after that), the models might learn much faster
and will be able to find the best possible result without setting the
learning for too low and have to wait an unrealistic amount of time.

6.2 Genetic algorithm to find best strategy
The strategies that I implemented for backtesting pipeline are all
manual conditions that determine if the model should buy or sell
at a particular time. However, this is not the best approach to the
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problem. One possible approach to the problem is to use a genetic
algorithm to try to find the best strategy based on the prediction that
the models produce. By using genetic algorithm on the predictive
results, it can still be used as a way to compare themodels’ efficiency
but will reflect the potential of the models much better.

6.3 Convolutional Neural Network Input
To create the input for the Convolutional Neural Network, I had to
convert it into a 4 dimensional array as in figure 8. However, it is
not the best approach to the problem as it as to round float into the
nearest integer, which would in theory reduce the accuracy of the
model. A better way to convert the input into an image would be
much more preferred and in theory can significantly increase its
performance.
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