
Utilizing cloud storage for realistic augmented reality on
mobile

Phuc Tran
Earlham College

801 National Road West, Richmond IN 47374
ptranh14@earlham.edu

ABSTRACT
As for today, augmented reality technologies are shifting to-
wards small devices with a focus on user interaction. As
more techniques in rendering AR objects are developed,
more computing powers are needed to keep up. Mobile AR
technology has all functions built in, in addition to GPS
and compass for realistic AR rendering technology. How-
ever, mobile devices lack storage and the raw power for 3D
rendering of complex objects. The paper discusses the pos-
sibility of integrating cloud to fix these problems, and con-
clude that using cloud for performance is difficult while using
cloud for storage is possible. Results show that performance
drop when utilizing cloud storage for 3D objects are mini-
mal. As for now, cloud fetched objects are rendered without
textures, leading to a reduce in realism compared to local
fetched objects. Thus, the next step of the project is im-
plementing textures fetch from cloud DB on top of the 3D
object file fetch.

1. INTRODUCTION
Augmented reality (AR) technology has come a long way

in its development. As more techniques in rendering AR
objects are developed, we need more computing power to
keep our performance up. With Moore’s law, the special-
ized hardware has no difficulty rendering augmented reality
with extreme realism and high performance. The same can-
not be said for mobile AR due to the need for other functions
integrated in a mobile device, such as communications, in-
ternet access, long-lasting battery, speaker, receiver, etc. In
addition, mobile devices need to be compact and lightweight
to provide ease of usage for customers, and the processors
for mobile devices do not need to be powerful since the ba-
sic usage of mobiles are calling, texting and browsing the
internet.

Mobile, on the other hand, is very accessible to customers
and has many augmented functions built-in such as the ac-
celerometer and camera. Furthermore, mobile devices have
GPS and compass which are suited to outdoor realistic AR
using the data collected from GPS and compass to render
shadows and shading from the sun. With these tools built in
a mobile device, AR frameworks can create a realistic reality
from these data collected. The only limitation in mobile AR
technology is the low performance and the lack of storage
space for complex 3D objects.

With that said, the paper proposes integrating a cloud
technology to alleviate problems that mobile devices suffer,
while utilizing the variety of sensors available to the device
for a smooth and realistic AR experience. The paper uses

a variety of frameworks and algorithms to render complex
objects outdoor with realism in mind. Furthermore, the pa-
per will discusses the results and decisions in utlizing cloud
technology for an improvement to mobile AR.

2. CURRENT ADVANCEMENT

2.1 Realistic AR rendering technology
In the field of realistic rendering technology, one object

rendering algorithm proposed by Kolivand and Sunar uti-
lizes the GPS location, the interaction between sky color,
the sun, the orientation, GPS, date and time to correctly
determine how the object looks, where should it be and its
shadow.[3]

There are two notable techniques being proposed in the
paper. Firstly, sky modeling is the act of modeling the sky
using 3D modeling software and mathematical functions.
Then, the location of the sun on the dome-like sky is de-
termined by the GPS location and time of day. Secondly,
the shadow of the object is determined by Z-Partitioning
following Gaussian approach to create semi-soft shadow. [3]

Figure 1: The process of rendering proposed in the
paper by Kolivand and Sunar [3]

Another problem in the realistic AR field is the lack of
distance between real and virtual objects. Virtual objects
usually appear nearer to the camera and this issue is met
more in outdoor environments due to long distances and
wide areas. To address this issue, the paper suggests adding
a parameter of Fog in the spatial partition of the view, makes



the virtual objects appear far from camera and consequently
suitable for far distances in outdoor environments. [3]

Figure 2: A scene demonstrating realism of the ele-
phants, rendered on the right scene using the real-
istic rendering algorithm proposed by Kolivand and
Sunar. [3]

2.2 Integrating cloud technology to mobile AR
rendering technology

Mobile devices have a weakness of small storage and com-
puting powers and a strength in having connections to net-
works and location services. Cloud technology utilizes the
networks to help alleviate the problem of computing and
storage in mobile devices. Augmented reality sometimes re-
quires large global data, it is even more important to inte-
grate cloud technology to AR systems.

To address this technology, a paper by Sundaram et al in-
troduced an application that uses efficiently cloud technol-
ogy to develop Location Based Augmented Reality applica-
tion. First and foremost, all the resources that are required
or utilized by the application are all stored in the server.
Once this is done, a URL will be generated for the AR ap-
plication. The URL links the app to the server to access
information. Then, on the application only the longitude,
latitude and the URLs are stored on the database. When-
ever the needs to access a point of interest, the URL will be
used to access information on the cloud. [6]

This method by the paper works well and is simple enough
to be implemented easily. However, it does not address the
problem of computing speed by utilizing cloud computing.
The only thing it does is utilizing cloud storage for large,
global information sets. A proposed improvement to the
method is to send the image set to cloud, computing the
feature selection algorithm to find a match then send back
the output to the device.

Another more advanced method proposed by Bae et al,
allows users to access and query 3D information related
to real-world physical objects and see it precisely overlaid
on top of imagery of the associated physical objects. The
method first of all derive a 3D model generated from a set
of pre-collected photographs stored on the cloud. Then, the
usersâĂŹ images taken by the camera are compared to the
3D model to get the usersâĂŹ orientation and 3D location.
Afterwards, the information stored are displayed to the gen-
erated 3D model. [1]

Furthermore, the scalability problems are also addressed,
such as when the information entities associated with real-
world objects increased. With that said, the proposed method
is a big improvement to the state-of-the-art cloud technology
currently being utilized in mobile AR. [1]

One paper by Shiraz et al in 2014, investigates the over-
head of runtime application partitioning of mobile devices

for mobile cloud computing. Application partitioning is the
offloading algorithms for the distribution of processing load
between powerful server nodes and resources constraint mo-
bile devices. The investigation uses a model of mobile cloud
computing (MCC) where the mobile devices seamlessly ac-
cess the services provided by the computational cloud to
obtain the resource benefits at low cost through wireless
technology. [5]

Application partitioning is very powerful in that it allows
adjustments to the amount of work offloaded to the cloud
based on how powerful the cloud is and how powerful the de-
vices are. For the environment, the overhead of runtime ap-
plication partitioning is investigated in simulation and in the
real environment. SmartSim is employed for the evaluation
of the overhead of runtime application on mobile devices.
SmartSim is a simulation tool that models the processing
capabilities of mobile devices and uses these to evaluate the
overhead of runtime application. [5]

The overhead of runtime application partitioning is fur-
ther analyzed by benchmarking the application for Android
devices in the real mobile cloud computing environment.
The experimental setup consists a cloud server node, Wi-
Fi network, and a Samsung Galaxy SII mobile device. The
mobile accesses the wireless network using a Wi-Fi wireless
network connection of type 802.11g, with the available phys-
ical layer data rates of 54 Mbps. [5]

Overall, the paper said that the runtime application par-
titioning of the intensive components of the mobile apps
is a resource intensive mechanism. Empirical evidence and
analysis indicates that additional resources on mobile de-
vices depends on the instances of runtime application parti-
tioning, and the computational intensity of the application
partitions. The paper concludes that the runtime appli-
cation partitioning of tradition mobile applications results
in additional overhead for deployment and management of
distributed platform. Thus, it is difficult to employ cloud
computing technologies alongside with the application parti-
tioning to maximize computational speed on mobile devices.
Furthermore, since there are big limitations on networking
for mobile devices, the cloud computing future for mobile is
even less appealing. [5]

With that said, the aim for this paper is to utilize cloud
technology differently than a performance boost. Aside from
performance, cloud technology can be used to allow clients
the access to a shared storage for multiple clients without
the need for local storage. This can be done due to us-
ing cloud technology for storage only decreases the overhead
performance without affecting the consistency in rendering
through local hardware. For AR, the overhead performance
is acceptable since AR requires consistency during rendering
the most.

3. PROPOSED SOLUTION
Mobile is the best platform for AR developing due to the

accessibility, popularity and the existing sensors on the mo-
bile. Many existing AR framework utilizing all the mobile
capabilities to render AR objects successfully.

Mobile devices have all the sensors necessary for AR tech-
nology with addition functions for realism. Camera and ac-
celerometers are vital for AR technology. GPS and compass
are essential to render realistically AR objects as determin-
ing the intensity and direction of the sunlight and the ori-
entation of objects are necessary for realistic rendering.



Previously, mobile devices do not have the capabilities for
high-powered realistic AR rendering due to the lack of sup-
ported hardware. Furthermore, mobile OS such as Apple
iOS has limited access to low level programming, thus mak-
ing AR development and optimization very difficult. Now,
with the new ARKit framework by Apple, AR development
and optimization is very easy, making realistic AR rendering
more appealing.

However, for complex objects, several problems arises.
Notable problems include the lack of raw power for ren-
dering objects and the lack of storage space for storing large
3D objects files. With that said, the paper proposes utilizing
and integrating cloud technology to the existing framework
to alleviate some of the problems.

3.1 Physically based rendering technology for
realistic rendering of objects

The program uses multiple sensors for the realistic render-
ing of objects. More specifically, a method called Physically
Based Rendering (PBR) is used to make objects as realis-
tic as possible. For shadow rendering, deferred method of
shadow rendering is used to improve rendering objects with
multiple light sources.

Figure 3: An example of PBR on regular computer
3D objects rendering. Using different environment,
the object is displayed differently. [7]

The basic concept of PBR is that when you add tex-
tures to your object you provide information that includes
albedo, roughness and metalness. Albedo is the base color
input, commonly known as a diffuse map. It is the ma-
terial texture without any lighting or shadow information.
Roughness describes how rough or smooth the material will
be. Rougher surfaces show dimmer reflections and smoother
surfaces show brighter specular reflections. Metalness is a
rough equivalent to how shiny a material will be. [7]

Utilizing PBR also requires us to have an environment
texture to render reflections on the surface of 3D objects
with high metalness. In order to fully utilize PBR to render
objects realistically, the environment texture needs to be
updated frequently to render the reflecting surfaces of the
objects. However, updating environment texture is difficult
and time-consuming as an image depicting the surroundings
of the object is needed.

Figure 4: An example of an object reflecting the
light from an environment cube map in the back-
ground.

With that said, to maximize realism while not forcing
users to capture environment texture every few minutes, dif-
ferent default environment textures are stored for different
time of the day with different lightings. These environment
textures are called cube maps which depicts the six different
environment sides of the objects. Using different cube maps
results in different lighting and reflections on the object.

However, since the environment of augmented objects change
vastly depending on the location of the user, using an ac-
curate and clear cube map every time we render objects is
unrealistic. Therefore, blurred, general-purpose cube maps
are made to depict different sun position based on time of
the day without using any concrete and accurate cube map.
This reduces the realism of augmented objects somewhat
but also reduce the need to generate cube map every time
the user render objects.

Figure 5: An example of a general-purpose cube
map after converting to equirectangular. This shows
the sun setting on the west.

Next, we need to estimate as accurately as we can about
the sun angle and intensity using the information provided
from the GPS and compass. This can be achieved easily by
determine the time and location of the mobile device.

3.2 Sunlight direction and shadows
For the sun angle and intensity, the time and location of

the mobile devices are needed. Then, an algorithm from an
NREL Technical Report, Solar Position Algorithm for Solar



Radiation Applications, is utilized to identify the azimuth
angle, elevation angle and altitude angle of the sun. Fur-
thermore, with the time of the day and the day of the year
we can calculate the intensity of the sun. [4]

The NREL Technical Report, Solar Position Algorithm
for Solar Radiation Applications, describes a procedure for
predicting the position of the sun at any point between the
year -2000 and 6000. It predicts the position of the sun
by predicting two position variable, the solar zenith angle
and the solar azimuth angle. The algorithm from the re-
port has uncertainties of 0.0003 degrees for both zenith and
azimuth. The algorithm follows the algorithm described by
Jean Meeus but simplified focusing on only the sun instead
of all the planets. Some changes are also made for ease of
usage such as measuring azimuth angle from north and east-
ward instead of from south and eastward. [4]

Overall, the Solar Position Algorithm is an accurate cal-
culation of the sun position given the time of the day, the
date and the position. The algorithm is mainly used to cal-
culate solar azimuth angle and solar zenith angle. However,
it is also used to calculate accurate sunset and sunrise time
for sun intensity settings. [4]

With these information, it is possible to determine the di-
rection that the sun shines its light towards. With the direc-
tion information, we can render directional light source with
light intensity derived from the sunrise and sunset time. Fur-
thermore, with the sunrise and sunset time, we can change
the environment cube maps to fit the approximate current
position of the sun. Using sunrise and sunset time, we can
set ambient lighting intensity and directional lighting inten-
sity accordingly to render the object with the most realism.
The program that the project utilized is an implementation
for Swift from Dr. Jeff Craighead. He implemented the
Solar Calculator Algorithm for Swift. [2]

3.3 Plane recognition for objects placement
For plane recognition, the AR framework uses feature se-

lection for detecting planes. First of all, different texture
features are detected and selected through the camera input
and accelerometer readings. When similarities are recog-
nized, an anchor is created at the coordinate of the similar-
ities.

Using these recorded anchors, the AR framework can ren-
der objects effectively by position it relative to these an-
chors. To detect horizontal planes for object placement,
when enough anchors are recorded, a plane object is cre-
ated similar to a normal object. Afterwards, when more
anchors belonging to the same plane are detected, the plane
object is expanded to match the span of the anchors.

With these plane objects, the rendered objects are placed
right above the planes. To do that, whenever user taps,
a hit test is performed on the tap location and the planes
existing at that tap location. The closest plane is selected,
and the hit location is used to render the object. A visual
plane is also rendered whenever a plane is detected to show
the clickable area that objects can be rendered on.

3.4 Integrating cloud technology to store ob-
jects

Integrating cloud technology to mobile applications has
the benefit of allowing the mobile access to the strong per-
formance and data storage that cloud has. However, using
cloud technology requires the mobile to have strong and con-

sistent network which the mobile and the cloud cluster can
communicate through. As the main network connection mo-
bile has is wifi, the connection is not always consistent and
stable.

The consistency problem is even more evident in AR ren-
dering as AR requires continuous and undisrupted rendering
of objects on multiple directions and dimensions, if there are
stutters or lags, the AR rendering will fail to be useful.

Furthermore, another problem arises which is the runtime
partitioning of elastic mobile applications for mobile cloud
computing. It is the partitioning of the tasks that mobile
and the cloud cluster handles which makes it the most effi-
cient. An investigation by Ahmed shows that it is possible to
achieve higher efficiency integrating cloud for performance
than just using the mobile hardware performance. However,
the cost of calculating the partitioning needed is higher than
the cost saved from performing a successful partitioning. [5]

With that said, an elastic partitioning system is necessary
because with the inconsistency and variation in speed of mo-
bile network, the partition is different for different runtime
and should not be hardcoded. Therefore, using cloud tech-
nology to improve speed and performance is currently not
appealing and require more research or time.

One thing we can do with the cloud system is allowing
mobile to access the shared storage power of cloud system
to store and use 3D object files without the need of large
local storage space that mobile does not have. Utilizing
cloud for storage will also be what the paper aims to do.

To utilize cloud technology, the mobile needs a server to
connect itself to. This server will also store all of the 3D
objects and textures that the mobile needs to render the 3D
objects. When needed, the mobile will fetch the files from
the server to the mobile and uses these for rendering.

To create a cloud server, a lightweight SQLite database is
used to store the name of the objects and the url to it. For
server side processing, we use Python Flask module to re-
ceive and process HTTP requests. Using a SQLite database
and Flask, we can perform communications between the mo-
bile and the server side. When user downloaded an object,
the object is downloaded from the server to the temporary
storage on the phone and is then rendered when tap. Since
most other information is already accessible on the mobile,
rendering realistically using only object file is possible.

In the end, the cloud serves as a powerful shared storage
for the project, as using a shared storage provides lots of
varied objects for rendering. Furthermore, for large or com-
plex objects, the object description and textures files can be
very large. Utilizing cloud server helps reduce the storage at
the cost of minimal performance drop. These performance
drop will also be unnoticeable due to the need for plane
recognition before object rendering. Since plane recognition
took longer due to having to find similar features, the ob-
ject receive procedure will already be finished by the time
the plane is recognized.

However, due to the security measures that Apple im-
plore on its products, it is difficult for now to utilize textures
downloaded from the cloud server. Because of this reason,
for now the cloud will only store 3D object files without any
textures. The textures of the object will be white. The
method for rendering will remain PBR, thus materials will
still reflect the environments. The only difference is that the
textures will be white in color with no difference in reflec-
tions for all objects.



4. SOFTWARE ARCHITECTURE
Below is the complete software architecture of the project.

Overall the project has three main components, a mobile
controller, the ARKit framework and the cloud database.

Figure 6: The overall software architecture of the
project.

ARKit framework handles rendering object and execut-
ing control commands from the mobile controllers. ARKit
framework also handles camera, accelerometer and fetching
the object info from the Cloud DB. The plane recognition
algorithm also resides here and is included inside ARKit
Renderer to create frame output. This is where the major-
ity of the computings happens due to the high work load
of rendering complex 3D objects and feature selection for
anchors and plane recognition.

Figure 7: The software architecture of ARKit and
its interactions with other components.

The Mobile Controller is the main controller of the project.
It handles screen input, output and outside control such as
fetch and render. The Mobile Controller also receives and
use GPS Coordinates and Time to calculate sun position
using Solar Calculator Algorithm and uses that to calcu-
late the sun’s coordinate in the AR Coordinate system and
finally asks the ARKit Framework to render it. The Mo-

bile Controller also receives frame output from the ARKit
Framework and displays it on the screen.

Figure 8: The software architecture of the Mobile
Controller and its interactions with other compo-
nents.

The Cloud DB is the object database of the project. It
receives fetch object info and send object info to the frame-
work for rendering. The Cloud DB consists a Python Flask
module and a SQLite DB for storing objects name and paths.

Figure 9: The software architecture of Cloud DB
and its interactions with other components.

5. RESULT
The result of the project is a demo for realistic rendering

with cloud storage. There are two options for selecting 3D
objects, one is the local object database and the other is the
cloud object database. The local ones have textures and thus
look more realistic due to colors and textures. The database
ones do not have textures thus do not have as much realism
as the local ones, but in return costs no storage space.



Figure 10: Rendering using local database.

Figure 11: Rendering using cloud database.

For performance drop on using cloud storage, the time
it takes to download object files to the local machine is in-
significant to the time it take to load it to the AR framework.
Therefore, there is little to no difference in performance drop
between loading an object from cloud and loading an object

from local database.
For plane detection, since it requires anchors and features

of real world environment, it is difficult to track the time
it takes to detect a plane. However, with slow and steady
phone movement, the plane detection can be very accurate.

Figure 12: Plane recognition of a table.

Figure 13: Object from cloud DB placed on top of
detected surface.



For performance measures, using the same object on cloud
and on local database has no noticeable difference except for
RAM usage. This is due to local database has textures which
are considerable in size, therefore using a lot more RAM
than using cloud database. Overall, the CPU utilization
are the same for both of the methods, and the RAM usage
are higher when using local objects, since local object has
textures.

Below is the result of rendering the same object three
times for local database and three times for cloud database.

Rendering results local
Exp 1 Exp 2 Exp 3

CPU 47% 42% 42%
Memory 63.3 MB 63 MB 62.5 MB
FPS 60 FPS 60 FPS 60 FPS

Rendering results cloud
Exp 1 Exp 2 Exp 3

CPU 44% 42% 45%
Memory 47.1 MB 47.1 MB 46.9 MB
FPS 60 FPS 60 FPS 60 FPS

The results show that for CPU Utilization, both cloud
and local fetched objects have roughly the same CPU Util,
leading to the conclusion that utilizing cloud has little to no
impact on CPU Utilization.

Memory usage, however, shows that local fetched object
uses much larger memory than cloud fetched objects (roughly
33% increase in memory usage). This is due to when ren-
dering local fetched objects, the ARKit framework has to
load the textures files to RAM as well as the 3D object file
while for rendering cloud fetched objects the ARKit frame-
work does not have to load textures files. It is the trade of
between more realism (from textures) and less RAM usage.

Finally, FPS is the same for all 6 experiments, leading to
the conclusion that there is no performance drop on using
cloud fetched versus using local objects.

6. FUTURE WORK
There are several weakness to the current model. One

biggest weakness lies in the fact that the project could not
receive texture information from the model. Therefore, the
biggest goal for future work is to allow complete and seam-
less download of objects from model to textures.

Another weakness to the current model lies in its degrade
in performance when loading large objects. Cloud technol-
ogy utilized currently only alleviate or improve the storage
function of the project. It is known that cloud computing
can be very useful for augmented reality due to heavy calcu-
lations needed for rendering 3D objects. Therefore, another
goal for future work is implementing cloud computing as a
improvement to the current model.

Of course, as stated by Shiraz et al in 2014 that utilizing
cloud computing usually yields little results due to the need
for partitioning the work between local and cloud. However,
as connection speed improves and as mobile is a platform
where connection speed is more important than computing
speed, utilizing cloud computing might be worth it. For now,
due to time constraint, other functionalities are prioritized
over cloud computing. [5]

Another possible expansion of the current project is the
ability to convert any 3D object files to Apple’s SceneKit file
for rendering. Currently, other 3D object data files need to
be converted offline to .scn to be able to render successfully

in the project. Therefore, a possible next step could be
expanding the list of supported files type to .dae, .obj, .blend
and a variety of others.

7. CONCLUSION
The process rendering realistic Augmented Reality objects

requires lightings, textures and usually further requires lots
of storage space due to the amount of textures and com-
plexities. However, utilizing cloud storage will alleviate the
storage space issue with little to no impact to performance.
The project describes and implements a realistic rendering
approach for augmented reality on mobile.

The project uses a simple three component architecture
of a controller, the framework and the cloud database, mim-
icking the modal view controller architecture with slight
changes. The result shows that for local stored objects, the
performance and realism is as expected. For cloud fetched
objects, due to the lack of textures, the realism level could
be improved. That leads to the next step of implementing
textures storage on cloud database for improving realism for
cloud stored objects as well as local objects.

8. ACKNOWLEDGEMENT
I would like to thank Charlie Peck and Xunfei Jiang for

the expert advice, support and guidance throughout this
project. Furthermore, I would like to thank the 3D model-
ing experts from TurboSquid for providing open-source high-
quality 3D artwork that I can use in my project. I would like
to also thank HDRI Hub, a provider of free textures who pro-
vided the open-source HDRI environment cube maps that I
used in my project.

9. REFERENCES
[1] H. Bae, M. Walker, J. White, Y. Pan, Y. Sun, and

M. Golparvar-Fard. Fast and scalable
structure-from-motion based localization for
high-precision mobile augmented reality systems.
5(1):1–21. OCLC: 6559324201.

[2] J. Craighead. Swift-solar-calculator.

[3] H. Kolivand and M. Sunar. Realistic real-time outdoor
rendering in augmented reality. 9(9). OCLC:
5633963447.

[4] I. Reda and A. Andreas. Solar position algorithm for
solar radiation applications. Technical report, National
Renewable Energy Laboratory, 2008.

[5] M. Shiraz, E. Ahmed, A. Gani, and Q. Han.
Investigation on runtime partitioning of elastic mobile
applications for mobile cloud computing. The Journal
of Supercomputing: An International Journal of
High-Performance Computer Design, Analysis, and
Use, 67:84–103, 2014.

[6] V. M. Sundaram, S. K. Vasudevan, A. Ritesh, and
C. Santhosh. An innovative app with for location
finding with augmented reality using CLOUD.
50:585–589. OCLC: 5824415986.

[7] J. Wilson. Physically-based rendering, and you can too!


