Post-Train Data Addition To Decision Trees

Introduction

- Decision Trees are among the most powerful techniques in machine
learning. They are widely used for prediction problems. However,
their widespread use in applications involving Big Data means even
though they are powerful, they are expensive to maintain. Creating
such models can take hours, even days.

Decision Trees also become less effective over time, requiring new
data to be used to improve their performance. However, in many
cases, the data 1s reused 1n the development of the new tree. The old
and new trees share similar features and data. To combat this cost,
many other types of machine learning models have ways to adapt to
new data 1n place, such as recurrent neural networks.

In an effort to reduce the time cost of these updates, this project
presents an algorithm designed to add data to a tree in-place, instead
of rebuilding the tree from scratch.

System Diagram

Common Practice New Concept

.......................................

--

The diagram on the left shows the standard flow of data through the
process of training and testing before reaching production.

On the right, the new system 1s shown, wherein data is piped directly
to the model in production.

Methodology

The 1nitial step was to develop an algorithm for how to add data to a
pre-existing tree. This required understanding of how the tree would
originally be created.

For the base tree, the DECISION-TREE-LEARNING algorithm
presented 1n Russel and Norvig’s Artificial Intelligence: A Modern
Approach was used. It 1s a foundational algorithm, which 1s easily
implemented 1n Python.

With the understanding of how the tree 1s developed, the ADD-TO-
DECISION-TREE algorithm was then created to best utilize the
features needed. It 1s built recursively, similar to how the tree
algorithm works.

Based on how this algorithm works, several changes were made to
the implementation of the decision tree to make certain information
available.

Tests were then developed using binary classification metrics.

Jeremy Swerdlow

Computer Science, Earlham College

Psuedocode

Decision Tree Creation Algorithm!
function DECISION-TREE-LEARNING(examples, attributes, parent examples) returns a tree

if examples 1s empty then return PLURALITY-VALUE(parent examples)
else if all examples have the same classification then return the classification
else if attributes 1s empty then return PLURALITY-VALUE(examples)
else
A «— argmaxa € attributes IMPORTANCE(a, examples)
tree < a new decision tree with root test 4
for each value vk of 4 do
exs «—{e : e Eexamples and e.A = vk}
subtree «— DECISION-TREE-LEARNING(exs, attributes — A, examples)
add a branch to tree with label (4 = vk) and subtree subtree
return free

Decision Tree Addition Algorithm

function ADD-TO-DECISION-TREE(examples, tree) returns a tree

goal = tree.goal
dec = tree.decision
for each value row of examples do
add row to tree.data
if row/dec] in tree.branches then
if tree.branches[row/dec]] is a leaf then
if row/[goal] is equal to leaf value then return tree
else
exs «—{e : e € tree.data and e[dec] = row/[dec]}
tree.branches[row/[dec]] = DECISION-TREE-LEARNING(exs, tree.remaining attributes, tree.data)
else
tree.branches[row/[dec]|] = ADD-TO-DECISION-TREE(row, tree.branches/row/dec]])
else
tree.branches[row/[dec]] = row[goal]
return free

Example Trees

Original Tree Node Added Tree

size:
{no 3.'yes": 21
‘m medium [large \enormous \Num
earsha e:
yes 3,'no": 1}

pointed \folded

RGN

To see the results of using the proposed algorithm, a series of tests
were developed. The tests used an AB method to compare the results
of the algorithm against the current practice of rebuilding the tree.

- As decision trees are a machine learning technique, they rely on data
to be built. For this project, data came from Kaggle, an online data
housing and distribution service, and from David Barbella, Assistant
Professor of Computer Science at Earlham College.

- Each test developed used a series of benchmark metrics for
classification problems to see how the new model performs in
comparison to the control. Certain tests were run to see results when
specific elements of the algorithm were reached.

- These data and tests allow for an extensive testing of the algorithm. If

the tests show positive improvements in the performance metrics and

a decrease 1n time, the algorithm will be successful.

Conclusion

- The algorithm developed in the process of this research shows
decision trees can be successfully updated to contain new data.

- The algorithm allows data to be added regardless of if there are
existing nodes within the tree which match its features or not.
Regardless of if such new nodes are created, the weights of the tree
are updated to match the entire dataset.

- While this result 1s a positive one, 1t gives way to several future
research questions. Data accuracy 1s known to decay over time, yet
this research 1s limited only to the editing of trees to add data; it does
not explore deleting data from trees. It also adds data one row at a
time, instead of attempting to handle 1t as a batch.

- Additionally, this algorithm 1s built to work with one of the more
basic implementations of decision trees. Further research could go
into the creation of similar methods for more complex algorithms.

Retferences & Acknowledgements

References

[1] Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern
Approach. Prentice Hall.

[2] “graphviz / graphviz,” GitLab. [Online]. Available:
https://gitlab.com/graphviz/graphviz. [Accessed: 04-Apr-2018].

Acknowledgements

A special thanks to the Earlham College Computer Science Department
faculty for their support throughout this research. Without their support
this project would not have been successful.

A thanks as well to the System Administrators at Earlham College for
the rapid installation of all relevant resources to the work when needed.

