
Detecting Textual Analogies Using Semi-Supervised Learning
Rei Rembeci

Department of Computer Science,
Earlham College,

Richmond, IN 47374
rrembe15@earlham.edu

ABSTRACT
Semi-supervised learning is a family of techniques in machine learn-
ing, which has seen a growth in interest due to the fact it requires
less human effort and can provide better accuracy compared to
other machine learning techniques. Analogy is an essential aspect
of human communication, understanding, and knowledge sharing.
However, strategies for detecting textual analogies using machines
are largely unexplored. There is also no standard corpus of textual
analogies. This paper presents a system for detecting analogies in
a given text using two semi supervised learning techniques; trans-
ductive support vector machines (TSVMs) and label propagation.
Count vectorization, tf-idf, and hash vectorization are the explored
feature extraction tools. The Brown corpus is divided into three
parts: unlabeled data used for training the classifier, manually la-
beled data used for training the classifier, and manually labeled data
used for testing the classifier. The accuracy of the classifications,
confusion matrices, as well as the f-scores, are used to evaluate the
performance of the system.

KEYWORDS
analogy, natural language processing, semi-supervised learning,
transductive support vector machines, label propagation

1 INTRODUCTION
Natural language processing (NLP) is an intersectional field concern-
ing interactions and relationships between computers and natural
languages. Machine learning can be used to recognize patterns in
natural languages and use such patterns to make predictions or
classifications. The machine learning process can be unsupervised,
supervised or semi-supervised. Semi-supervised learning considers
the problem of classification when only a subset of the training
data have corresponding class labels. Such problems are of immense
practical interest in a wide range of applications, including image
search, natural language parsing, and speech analysis, where unla-
beled data is abundant, but obtaining class labels is expensive or
impossible to obtain for the entire data set [9].
Analogy involves the comparison of two structured representations.
The representations being compared typically include labeled re-
lationships between entities and between other relations [6]. For
example, when reading "the Rutherford model of the atom is anal-
ogous to the solar system," we can draw similarities between the
two structures. Specifically, we can learn that the nucleus of the
atom has the same role as the sun in the solar system, and elec-
trons orbit the nucleus just like the planets orbit the sun. These
similarities are illustrated in figure 1. Other cognitive processes
such as solving a problem in a similar way to another problem
previously solved, involve analogy-making. Cognitive systems that

Figure 1

can process through textual analogies can learn more from what
they read [6]. Thus, being able to detect analogies is an essential
aspect of human communication, understanding, and knowledge
sharing, as it serves as a foundation for other types of thinking. To
the best of my knowledge, strategies for detecting analogy with
a machine are largely unexplored. So far as I have been able to
determine, there is no standard corpus of analogy text, an impor-
tant tool for developing and evaluating algorithms for analogy text
classification.
This paper offers a system which uses semi-supervised learning to
detect textual analogies. In particular it uses two semi-supervised
learning techniques; transductive support vector machines and la-
bel propagation. Count vectorization, tf-idf, and hash vectorization
are the explored feature extraction tools. A comparison between
the performance of the classifiers and between the feature extrac-
tion tools is offered. Section 2 offers a survey report of the related
work that influenced this system. The framework of the system
is described in section 3, and the implementation is described in
section 4. Section 5 offers the evaluation of the system, followed by
a conclusion and future goals in section 6.

2 RELATEDWORK
In this section, an overview of some of the most important parts
of the system are described. In the first subsection, an explanation
of count vectorization, tf-idf, and hashing vectorization is offered
to display their differences. Next, an overview of the transductive



support vector machines and label propagation is presented. In the
last subsection, the importance of analogy is further described.

2.1 Feature extraction
Text analysis is a major application field of machine learning algo-
rithms. However the raw data cannot be fed directly to the algo-
rithms themselves as most of them operate over numerical feature
vectors with a fixed size rather than raw text documents with vari-
able length [12]. To address this, feature extraction methods can be
used to transform other types of data, such as text or images, into
numerical features usable for machine learning. There are different
methods which allow such transformation, such as: count vector-
ization, tf-idf vectorization, hash vectorization and many more.
Countvectorizer implements both occurrence counting and tok-
enization. Tokenization is the process of chopping up strings into
pieces called tokens [12].
In a large text corpus, some words such as "the", "a", and "is" will be
very frequent. Such words carry very little meaningful information
about the actual contents of the document. If we were to feed the
direct count data directly to a classifier those very frequent terms
would shadow the frequencies of rarer yet more interesting terms.
Thus, in order to re-weight the count features into floating point
values suitable for usage by a classifier, it is very common to use
the tf-idf transformation. Tf means term-frequency while tf-idf
means term-frequency times inverse document-frequency. Term-
frequency represents the number of times a term occurs in the
text corpus. Inverse document-frequency diminishes the weight of
terms that occur very frequently in the document set and increases
the weight of terms that occur rarely [12].
Hashing Vectorizer implements the hashing trick, the application
of a hash function to the features and using their hash values as
indices directly, rather than looking the indices up in an associative
array [14]. This methods offers several advantages. It requires a
very low memory for large datasets, it is fast to pickle and un-pickle
as it holds no state besides the constructor parameters, and it can
be used in a streaming (partial fit) or parallel pipeline as there is no
state computed during fit [12]. However, some of the disadvantages
of HashingVectorizer are the following: there is no way to com-
pute the inverse transform (from feature indices to string feature
names) which can be a problem when trying to introspect which
features are most important to a model, there can be collisions,
and IDF weighting cannot be used since it would would render the
transformer stateful [12].

2.2 Semi-supervised learning
Because semi-supervised learning requires less human effort and
gives higher accuracy compared to other machine learning tech-
niques, it is of great interest both in theory and in practice [15]. Com-
monly used methods for semi-supervised learning, include: trans-
ductive support vector machines, generative models, and graph-
based models.
Transductive support vector machines are an extension of standard
support vector machines. They incorporate the usage of unlabeled
data, to find a labeling of the unlabeled data so that a linear bound-
ary has the maximum margin on both the original labeled data and
the now labeled, unlabeled data [15].

Bennett and Demiriz present a semi-supervised SVM model using
the entire data available from both the training set and the test-
ing/working set, namely S3VM [2]. Next, they show that this model
can be converted from a 1-norm linear SVM to a mixed-integer
program. The integer S3VM , when tested on transduction using
overall risk minimization, either improved or showed no significant
difference in generalization compared to the usual structural risk
minimization approach. Moreover, Joachims presents transductive
support vector machines as a method used in semi-supervised learn-
ing for text classification [8]. It begins by providing an explanation
of the transductive approach taken with the SVMs. Joachims also
explains why TSVMs are well suited for text classification. Next,
Joachim conducts experiments which provide a significant improve-
ment in the accuracy of text classification when compared to SVMs
or multinomial Bayes [8].
Transductive support vector machines might seem to be the per-
fect semi-supervised algorithm, since it combines the powerful
regularization of SVMs with a direct implementation of the cluster
assumption. However, its main drawback is that the objective func-
tion, which places the decision boundary in low density regions
using gradient descent, is non convex and thus difficult to minimize
[4].
Graph-based semi-supervised methods define a graph where the
nodes are labeled and unlabeled examples in the dataset, and edges
reflect the similarity of examples. These methods usually assume
label smoothness over the graph. Graph methods are discriminative,
and transductive [15].
Szummer and Jaakkola combine a limited number of labeled exam-
ples with a Markov random walk representation over the unlabeled
examples. Next, the authors develop and present the theory behind
the estimation criteria/algorithms developed. These algorithms are
suited to the Markov representation and the tests are done for text
classification. The results show that the Markov randomwalk repre-
sentation outperformed SVM [13]. Moreover, Zhu and Ghahramani
present label propagation, which is closely related to the Markov
random walks algorithm but approaching the problem from a dif-
ferent perspective [16].

2.3 Computational models of analogy
Analogy involves the comparison of two structured representations.
The representations being compared usually include labeled rela-
tionships between entities and between other relations.[6]
Analogy-making is a basic cognitive ability. It is present in humans
from a young age, and develops over time [10]. For example, it
starts with a baby imitating an adult, and progresses with devel-
oping the ability to recognize an analogy between a picture and
a corresponding real object. Moreover, other cognitive processes
such as perceiving a stone as a human face, solving a problem in a
way similar to another problem previously solved, arguing in court
for a case based on its common structure with another case, and
many more, involve analogy-making [10]. Hence, analogy-making
seems to be crucial for human cognition as it serves as a foundation
for other types of thinking. As a result, it is important to develop
computational models of analogy-making.
The computational modeling of analogy has progressed rapidly in

2



Figure 2: System design

the past 25 years. It has been fueled by a collaboration between psy-
chologists, AI scientist, linguists and philosophers. Gentner’s model
of analogy is broken down into: retrieval, mapping, abstraction,
and re-representation. Out of the four categories aforementioned,
mapping is the most important one. Mapping consists of aligning
two given situations to produce a set of correspondences that indi-
cate "what goes with what," candidate inferences that follow from
the analogy, and a structural evaluation score which provides a
numerical measure of how well the base and the target align [6].
Barbella and Forbus, focusing on instructional textual analogies,
explore how analogy can be integrated into dialogue act theories
based on an analysis of how the functional constraints of analogi-
cal mapping and case construction interact with the properties of
discourse [1].

3 SYSTEM DESIGN
This section describes the different aspects of the system design
shown in figure 2, specifically: extracting and cleaning the corpora;
building the training and testing sets; feature extraction; exhaus-
tive search on the parameters; and finally training and testing the
classifier.

3.1 Extracting and cleaning the corpora
First, the corpus is extracted into a CSV format. Then, a word
hunting script, which looks for phrases that might indicate the
presence of an analogy, shown below by figure 3, splits the data
into two datasets.

Figure 3: List of phrases

The first dataset contains all the sentences which, according to
the word hunt are more likely to contain analogies. Similarly, the
second dataset contains all the sentences which according to the

word hunt are less likely to contain analogies. Now, all the sentences
from the corpus need to be preprocessed to remove metadata in
order to avoid the risk of debasing the experiments. The metadata
is initially added when extracting the corpus in order to give each
sentence a unique identifier. For instance, a sentence will look like:
"[sourcename.txt, PARA#1, SENT#4], That just burns my toast,
you know what I mean?." In this case, we are only interested in
the sentence itself, and the source name, paragraph number and
sentence number are not given to the system for training or testing.

3.2 Building the training set and the testing set
The dataset with potential analogies is manually labeled. This
results in two subsets: analogies, and analogy-like nonanalogies.
Analogy-like nonanalogies consist of those sentences which once
labeled, turn out to not contain analogies. Analogies and analogy-
like nonanalogies, combined with the non analogies dataset, the
dataset that word hunt classified as non potential analogies, form
the complete set. The complete set is randomly shuffled and 85% of
it form the training set, while the remaining form the testing set.
Since semi supervised learning will be later used, only 2% of the
training set is unlabeled, while the testing set is entirely labeled.

3.3 Feature extraction
Once the training set and the testing set are created, the textual
data from the sets needs to be converted into a numerical matrix
fit for the classifiers. The system provided in this paper utilizes
all the methods described in the survey section, namely count
vectorization, tf-idf vectorization, and hash vectorization.

3.4 Exhaustive search on the parameters
To boost the performance of the classifiers, an exhaustive search
over specified parameters values for each combination of feature
extraction tools and classifier is computed. The exhaustive search
implements the usual estimator API: when fitting it on a dataset,
all the possible combinations of parameter values are evaluated
and the best combination is retained [3]. The list of the parameters
search over are shown in the figure 4 below.

Figure 4: List of parameters

3.5 Training and testing the classifier
Once the textual data is converted into a numerical sparse matrix,
the classifier is ready to be trained using the training set. Transduc-
tive support vector machines and label propagation are the semi
supervised learning classifiers used by the system described in this
paper.

3



4 IMPLEMENTATION
The implementation on the system and experiments are accom-
plished in Python. The written scripts are a combination of self-
written scripts, Scikit Learn modules, and adaptation of the trans-
ductive support vector as offered by Gieseke et al. [7].

4.1 Python
4.1.1 Scikit Learn.

The Scikit Learn module[3] provides implementation for the fol-
lowing:

a) Feature extraction
b) Exhaustive searches
c) Label Propagation
d) Confusion matrix

4.1.2 Self-written scripts.
The following scripts are used to extract the corpora, build the
training set and the testing set, and analyze the results.

a) compile_folder
compile_folder is used to extract and convert all the text files
of the corpus to a CSV file.

b) wordhunt
wordhunt goes through each sentence in the CSV file gen-
erated by compile_folder and looks for phrases shown in
Figure 3. It then creates two CSV files, one with sentences
that include the aforementioned phrases, and one with sen-
tences that don’t.

c) functions
functions build the training and the testing set, as well as
extract the features from these sets

d) main_grid
main_grid implements the exhaustive search on the parame-
ters. It takes as input the name of the classifier and the set
of parameter values to be searched over. It returns the set of
parameters which produced the highest score when training
the classifier, along with the score.

e) main_interface
main_interface is the central script. It takes as input the
positive set, the negative set, and name of classifier. Its output
is the overall accuracy, precision, recall, f1-score, and the
confusion matrix.

f) overlap-test
overlap-test runs an overlapping test in error between two
sets of (classifier - feature extraction tool) pairs.

4.1.3 Tranductive support vector machines.
The transductive support vector machines script used is the Scikit
wrapper provided by Madl [11]. The initial Scikit wrapper was
designed under Python 2, but the system provided in this paper
uses Python 3. As a result, necessary changes were made in the
code.

5 EXPERIMENTS
5.1 The Brown Corpus
The Brown Corpus contains of over 1 million words, consisting
of 500 samples, distributed across 15 genres including political

reportage, book reviews, government documents and many more
[5]. For the experiments, 20456 random sentences were used in
total. Out of these 20456 sentences, 69 were part of the testing set
while the remaining 20387 were part of the training set. Out of the
20387 sentences in the training set, 20001 were unlabeled and the
remaining 386 were labeled.

5.2 Analysis
The performance of the system is evaluated based on the overall
accuracy, confusion matrix, and f-scores. To further analyze such
results, an overlapping test between the two classifiers is run, which
determines the overlap in error between the performances of dif-
ferent classifiers. The results of the tests can provide important
information about the features and the classifiers. Provided that the
classifiers produce different set of right and wrong classifications,
a combination of the classifiers can potentially be used to increase
the overall accuracy of the system. On the other hand, if the classi-
fiers produce similar set of right and wrong classifications, a new
strategy needs to be formulated for labeling the "hard to classify"
examples correctly.

6 CONCLUSION AND FUTUREWORK

Transductive support vectormachines and label propagation showed
similar results when considering the accuracy of the model. How-
ever, the f-scores were significantly different. For the transductive
support vector machines, the precision was 0.4, the recall was 0.07,
and f1-score was 0.13. These results are displayed in the figure

4



above. On the other hand, label propagation classified everything
as non-analogies, leading to a precision, recall, and f1-score equal
to 0. This meant that the overlapping test between the classifiers
produced similar sets of wrong classification, which suggest a better
strategy is needed for detecting textual analogies. As a result, for fu-
ture work I would like to use a parser to extract the base and target
from each sentence instead of considering the full sentence. While
three different feature extraction tools were used (count, tf-idf,
hash) they did not have any substantial effect on the performance
of the classifiers.

7 ACKNOWLEDGMENTS
This project was supported by the Earlham College Computer Sci-
ence Department as part of the Senior Capstone. I would like to
thank my capstone adviser, David Barbella, who provided his con-
stant assistance and knowledge throughout the process. I would
also like to thank Xunfei Jiang, Charles Peck, and Ajit Chavan for
their feedback and suggestions during Methods for Research and
Senior Capstone. Lastly, thanks to Phi Nguyen, for helping with
debugging.

REFERENCES
[1] David Michael Barbella and Kenneth D Forbus. 2011. Analogical Dialogue Acts:

Supporting Learning by Reading Analogies in Instructional Texts.. In AAAI.
[2] Kristin P. Bennett and Ayhan Demiriz. 1999. Semi-supervised support vector

machines. In Advances in Neural Information processing systems. 368–374.
[3] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas

Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort,
Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël
Varoquaux. 2013. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining
and Machine Learning. 108–122.

[4] Olivier Chapelle and Alexander Zien. 2005. Semi-Supervised Classification by
Low Density Separation.. In AISTATS. Citeseer, 57–64.

[5] W. N. Francis and H. Kucera. 1979. Brown Corpus Manual. Technical Report.
Department of Linguistics, Brown University, Providence, Rhode Island, US.
http://icame.uib.no/brown/bcm.html

[6] Dedre Gentner and Kenneth D Forbus. 2011. Computational models of analogy.
Wiley interdisciplinary reviews: cognitive science 2, 3 (2011), 266–276.

[7] Fabian Gieseke, Antti Airola, Tapio Pahikkala, and Oliver Kramer. 2014. Fast and
simple gradient-based optimization for semi-supervised support vector machines.
Neurocomputing 123 (2014), 23–32.

[8] Thorsten Joachims. 1999. Transductive inference for text classification using
support vector machines. In ICML, Vol. 99. 200–209.

[9] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling.
2014. Semi-supervised learning with deep generative models. In Advances in
Neural Information Processing Systems. 3581–3589.

[10] Boicho Kokinov and Robert M French. 2003. Computational models of analogy-
making. Encyclopedia of cognitive science 1 (2003), 113–118.

[11] Tamas Madl. 2016. Semisupervised learning frameworks in Python. https:
//github.com/tmadl/semisup-learn

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[13] Martin Szummer and Tommi Jaakkola. 2002. Partially labeled classification with
Markov random walks. In Advances in neural information processing systems.
945–952.

[14] Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex
Smola. 2009. Feature hashing for large scale multitask learning. arXiv preprint
arXiv:0902.2206 (2009).

[15] Xiaojin Zhu. 2005. Semi-supervised learning literature survey. (2005).
[16] Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning from labeled and unlabeled

data with label propagation. (2002).

5

http://icame.uib.no/brown/bcm.html
https://github.com/tmadl/semisup-learn
https://github.com/tmadl/semisup-learn

	Abstract
	1 Introduction
	2 Related work
	2.1 Feature extraction
	2.2 Semi-supervised learning
	2.3 Computational models of analogy

	3 System design
	3.1 Extracting and cleaning the corpora
	3.2 Building the training set and the testing set
	3.3 Feature extraction
	3.4 Exhaustive search on the parameters
	3.5 Training and testing the classifier

	4 Implementation
	4.1 Python

	5 Experiments
	5.1 The Brown Corpus
	5.2 Analysis

	6 Conclusion and future work
	7 Acknowledgments
	References

