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ABSTRACT
This project involves utilizing machine learning techniques to at-
tempt to optimize an already existing artificial intelligence (AI)
agent that plays the roguelike game Dungeon Crawl Stone Soup
(DCSS). An expert system based AI agent has been developed that is
capable of winning a game of DCSS without human assistance with
a low frequency of success. This project aims to utilize machine
learning to automatically tune the agent to improve its performance
by optimizing values stored in its knowledge base concerning mon-
ster threat levels.
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1 INTRODUCTION
Handcrafted, heuristically developed artificial intelligence (AI) al-
gorithms currently exist for numerous applications. From gaming
software to automated drone flight to assembly-line robotics, these
algorithms are more and more becoming driving forces of moder-
nity, enabling and enhancing industrial society from the production
of goods to their consumption, and everywhere in between. [12]
[5] [20]

These algorithms are often effective in completing their tasks,
but are not necessarily optimized. This lack of optimization can
have a broad swath of effects - from negative effects as minimal
as slightly reduced movement efficiency to outright catastrophic
failure. Manually tuning algorithms for peak performance can be a
time intensive procedure, with the risk that the potentially marginal
gains from optimization will not be worth the time invested to do so.
However, if the process of optimization can be automated, then the
time required to effectively optimize code can be greatly improved.
[27]

This project investigating the utilization machine learning tech-
niques to optimize an already existing AI agent, or expert system
that plays the roguelike game Dungeon Crawl Stone Soup (DCSS).
[15] Roguelike games feature high levels of randomness and un-
predictability in each play through, creating a search space much
larger than that of static games such as Chess, or Go, where the
game is the same each time it is played. [7]

Despite the enormous complexity and stochasticity of DCSS,
an AI has been developed that is capable of winning a game of
DCSS named qw. [18] qw’s frequency of success at completing the
entire game is low, though still notably higher than the average
success rate of human players playing the game - 17% versus 0.73%.
[18] [25] This project aims to optimize qw’s behavior for a specific

section of the game to improve its performance. The optimization
will be performed by using machine learning techniques to find
the most appropriate values for a section of qw’s knowledge base.
If successful, this project will showcase a technique for refining
AI’s for more efficient and/or successful operation in stochastic or
unpredictable contexts.

Next, related works will be discussed. Following that, the design
and implementation of the project will be documented, followed
by results and analysis.

2 RELATEDWORK
This paper focuses upon the optimization of a game playing agent
for the roguelike game Dungeon Crawl Stone Soup. In accordance,
it is important to examine both the history and development of
gameplay agents for roguelike games. Attempts have been made
to optimize gameplay agents for games both roguelike and oth-
erwise - often utilizing machine learning - and these attempts at
optimization are worth investigating as well. Finally, works based
on applications of expert systems similar to roguelike gameplay
agents will be discussed.

2.1 Gameplay Agents for Roguelike Games
Gameplay agents exist that can conquer many of the games within
the roguelike genre, despite their renowned difficulty, complex-
ity, and inherent stochasticity. This paper catalogs an attempt to
optimize qw, an agent created to beat DCSS. Following are brief
descriptions of agents that are successful at beating the roguelike
games Rogue, Angband, and Nethack.

• Rogue and Rog-O-Matic
In 1980, Rogue, the titular roguelike, was released. In 1981,
Rog-O-Matic followed. The source code for Rog-O-Matic
has been preserved by various archivists and is currently
hosted on Github, among other places. [26] Designed as
an AI tooled to utilize an “expert system” so as to conquer
Rogue, Rog-O-Matic excelled at the task. As documented by
popular media representations such as “An Expert System
Outperforms Mere Mortals As It Conquers The Feared Dun-
geons Of Doom” found in an issue of Scientific American
from 1985, “Rog-O-Matic had a higher median score than any
of the 15 top Rogue players at” Carnegie Mellon University.
[16] The expert systems organized the decision making pro-
cesses needed to defeat Rogue into a "hierarchy of various
subsystems," depicted in figure 1. [16] Rogue in the early
1980s was a much simpler game to attempt to solve than
DCSS is today. Regardless, the success of the developers of
Rog-O-Matic shows that expert systems adept at winning



games that undergo such permutations as DCSS are well
within reach.

Figure 1: A schematic depicting the layout of the "expert
system" of Rog-O-Matic, the first gameplay agent to defeat
the game Rogue. Knowledge sources feed into expert sub-
systems which ultimately handle the decision making pro-
cesses of the agent.

• Angband and Borg
Angband is a Roguelike game that has been in development
since 1994, though it has inherited code from older rogue-
like games such as Moria and UMoria. It has since spawned
numerous variants featuring different dungeon styles and
playable character archetypes. [1] One of Angbands defining
features is non-persistent dungeons; leaving a floor of the
games dungeon will effectively destroy it. While a character
can, say, enter the first floor of the dungeon, leave, and then
enter the first floor again, a new layout with new monsters,
items, and traps will be generated each time a given depth is
entered. This allows for an effectively unlimited amount of
resources in the game, if the player follows a strategy known
as "level-scumming." [6] This strategy is easily exploitable by
automated gameplay agents, and is largely responsible for
the success of Borg, the premier Angband bot. By abusing
such a strategy, Borg is able to proceed through the game
safely and effectively. Borg functions by following an in-
ternal list of goals, evaluated sequentially until the game
is beaten. These goals range from very simple, such as de-
stroying worthless items in the characters inventory, to very
complex, such as determining the optimal set of equipment
to wear given the current contents of the characters inven-
tory. [2] This goal listing functions similarly to the expert
systems of Rog-O-Matic - handing off information about in-
ventory contents to functions designed to sort and prioritize
them, for instance - and ultimately, this goal setting and
following paradigm is what makes qw, the DCSS bot, tick.

• Nethack and BotHack
NetHack is a famous and incredibly complicated roguelike
under development since 1987. [11] Renowned for its im-
mense amounts of items, creatures, features, and interactions
between all of the above, the phrase “The devs think of ev-
erything” has become enshrined in the canon of the game’s

culture. [3] With that complexity in mind, creating a bot able
to “ascend” (beat the game) unassisted seemed like a pipe
dream for many years, until Reddit user duke-nh showed
their success with BotHack in 2015. [17] Similarly to the
Angband Borg tactic of level-scumming, BotHack’s success is
at least partially reliant on the arguably exploitative tactic of
"pudding farming" to generate an infinite amount of items for
the character to utilize, trivializing many aspects of the game.
This bot was programmed utilizing some knowledge sources
from previous NetHack bots TAEB and Saiph, such as mon-
ster and item dictionaries, but the expert subsystems those
sources fed into were hand coded by duke-nh. Thus, this bot
again follows a similar paradigm to previous expert systems
designed to beat roguelike games - encyclopedic knowledge
of possible threats and tools, combined with hand-coded
procedures for solving the various game states the bot is
bound to encounter. This bot is often successful at achieving
its task, but in the words of its developer, “all the bot logic is
hand-coded.” [17] This shows that this bot as well has room
for application of machine-learning based optimization.

2.2 Optimization of Gameplay Agents
Creation of a gameplay agent for a given game - particularly
a game featuring procedurally generated content - is often
an impressive feat. Optimization of these agents goes further,
allowing for improvement of performance over a number of
different possible axes, from speed to score to success rate.

• Rogue-Like Games as a Playground for Artificial In-
telligence - Evolutionary Approach
This paper by Cerny et. al [14] specifically deals with issues
like procedural content generation and their effects on al-
gorithmic attempts to beat roguelikes. They describe their
procedure towards creating an AI that has reached a 72%
winrate at the roguelike game Desktop Dungeons - a sim-
pler game than DCSS, but one featuring complex rule sets
and procedural content generation nonetheless. The authors
document their usage of recombination of greedy strategies
using evolutionary algorithms and demonstrate a remarkable
improvement over their initial hand made greedy algorithm
- which was only able to achieve victory 1% of the time. [14]
This shows that machine learning approaches can have enor-
mous potential in optimization of even rudimentary hand
designed algorithms.

• Maximizing Flow as a Metacontrol in Angband
In their 2015 paper, Mariusdottir et. al utilize hierarchical
reinforcement learning to match different decision making
strategies with different levels of difficulty that arise natu-
rally from the many different possible game states of the
roguelike Angband. [24] They demonstrate the applicability
of machine learning strategies towards optimization within
the genre of roguelikes when applied not only to single
decisions, but overall strategy decisions. They sought to
optimize player score as a metric, attempting to push the
Angband Borg to complete content as quickly as possible
while still surviving. While their new metacontrol strategies
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failed to produce success rates at clearing the game any bet-
ter than the default configuration of the Borg, they showed
a clear improvement between a handcrafted metacontrol
strategy selection algorithm and a similar algorithm that
was tuned utilizing machine learning techniques. This again
demonstrates the capability of machine learning to optimize
gameplay strategies for roguelike games.

• Learning Combat in NetHack
In this article by Campbell et. al, the authors describe “a
machine learning approach for a subset of combat in the
game of NetHack”. [13] They utilize a “dueling double deep-
Q network” to attempt to optimize what they term “low level
decision making” in the complicated roguelike NetHack. By
pairing a player agent against a varied combination of dif-
ferent significantly threatening monsters and using a ma-
chine learning toolkit to analyze the results, the authors
were able to demonstrate a broad improvement in weapon
choice and micro-strategy selection against a broad array
of mid-game threats. The authors note that the hard coded
combat strategies of BotHack are “not well tuned to [their]
limited, single-room test environment,” [13] but that indeed
combining the proven success of more complicated bots with
their optimization strategy is a key domain of future work.

2.3 Applications of Expert Systems
Understanding the process necessary to optimize game agents
and expert systems has benefits outside the domain of video
game AI. The following works are examples of this applica-
bility.

• DynamicAsset Protection&RiskManagementAbstrac-
tion Study
Rog-O-Matic has been further analyzed by scholars of other
fields, such as Henderson et al.’s appraisal of Rog-O-Matic as
an expert system in the article “Dynamic Asset Protection
& Risk Management Abstraction Study”. [21] The authors
analyze the ways in which Rog-o-Matic was designed so
as to “create an expert system with the ability to solve an
exploration problem”, going on to describe the contours of
“exploration problems” in mathematical terms, as systems
containing planar graphs which are explored from starting
points or nodes and which share observable characteristics
and the ability to transition between observable nodes. [21]
This sort of theoretical work on AI for procedurally gener-
ated games shows the applicability of this sort of work to
more generalized and mathematical problem sets, and real
world problem spaces such as automated network security
as described by Henderson et. al.

• An expert system for detection of breast cancer based
on association rules and neural network
In this paper by Karabatak and Ince, an expert system is
described which is capable of detecting breast cancer with a
correct classification rate of 95.6%. [23] This work shows not
just the applicability of expert systems towards real world
problem sets, but additionally the potent combination repre-
sented by expert systems and machine learning. Originally
based solely on neural network derived classification, the

author’s system performed better when an expert system
based on association rules was incorporated into their classi-
fier. This shows that real world applications of expert system
schemas can greatly benefit from machine learning based
optimization, and machine learning based classifiers can like-
wise be improved by the addition of heuristically designed
expert systems.

3 DESIGN & FRAMEWORK
The design of this project has three major focuses. The software
components of the project - DCSS, qw, and scikit-learn - is the first
focus to be discussed. The second is the framework of the hardware
utilization scheme used to collect data and generate results based
on said data. Finally, the specific design choices of what exactly is
being optimized will be discussed.

3.1 Software Components
This project focuses upon optimizing the expert system AI agent
qw for the game DCSS, utilizing the open source machine learning
toolkit scikit-learn. The justifications for the selection of these
pieces of software shall be discussed in this section.

3.1.1 DCSS. Dungeon Crawl Stone Soup (DCSS), a game in the
roguelike genre represents a facet of the problem space for this
work. “Roguelike” is a term for a genre of computer game featuring
a number of distinct elements. Frequently, these elements are taken
to be procedural content generation (PCG), “permadeath”, grid-
based gameplay, and turn-based gameplay. [19] These attributes
present a design space for AI systems that is at once challenging,
interesting, and suitable.

The combination of "random environment generation" (an ele-
ment of PCG) and permadeath create an experience where “[n]ot
only with every new game does the player enter a different loca-
tion, but also s/he always does it as a new character with only one
life” [19]. This serves to enhance re-playability for the consumers
of such games, and to create an interesting space to explore in
terms of AI development. Where games like Chess or Go feature
static content, predictable beginnings and a static board, games
with procedural content must be adapted to for any given attempt
to beat it. Lessens learned in failing must be generalized, as specific
contexts and encounters have minute chances of occurring again,
diminishing the usefulness of a “book” of board states such as in
chess. Many roguelikes do employ “seeds” in the algorithms which
generate procedural content[4], so it is theoretically possible to
encounter the same dungeon multiple times, which can be useful
for occasions such as debugging or challenges between players
competing for high-scores or fast victories. Figure 2 depicts a proce-
durally placed vault at the start of a game of DCSS; while the layout
of trees and water is a fixed element, it was randomly selected to
be present in the instance of the game featured, and the items and
monster appearing in it were randomly placed. DCSS has a vast
amount of such vaults, allowing them to be interspersed with more
stochastic seeming content for unique instances of the game to
still have chunks of structure. These vaults reward familiarity with
the game, as some feature specific valuable items or dangerous
enemies that a seasoned player can know are worth searching for
or avoiding when they encounter the vault. [22]
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Figure 2: A screen capture of a game of DCSS. The player
character is wearing green boots andwielding a sword; three
exits are visible, and a fierce gnoll wielding a halberd threat-
ens the playerâĂŹs progression further into the dungeon.
The game can alternately be played inASCIImode in a Unix-
like console environment, where symbols take the place of
tiles and sprites in representing gameplay information.

While the procedural generation of roguelike games provides
an interesting twist to the approach needed to develop effective
AI, the grid and turn based nature of the genre facilitates such
work. A grid based game provides a discrete amount of movement
options an order of magnitude or two smaller than a game with full
360°movement and rotation. Additionally, the turn-based nature of
the genre enables “thoughtful” AI that is not dependent upon quick
decisions. With no reflexes to account for, the AI can take as long
as is necessary to ponder individual choices, turns, and courses of
action.

These factors are all present in DCSS, and make it a compelling
problem space to optimize expert systems within. Additional fea-
tures specific to the game also make it an interesting and worth-
while testbed for automated gameplay agent optimization. These
features are rooted in the structure of the game itself - DCSS utilizes
“lua bindings” to allow for easy extension of the game and creation
of macro functions to allow players greater efficiency on input. It
is with these lua bindings that qw is written. Additionally, DCSS
contains a few automation features for reduction of gameplay te-
dium that make it particularly suitable for developing AI systems to
play it. These are “autoexplore” and “autofight,” which respectively
allow the player to automatically explore the dungeon until they
reach one of a designated stopping point (e.g. seeing a new monster,
finding a particular kind of item) and allow the player to either
take a single step towards an enemy or to attack the nearest enemy.
These features make implementation of an AI agent to play the
game much easier.

Finally, it is worth noting that the version of DCSS this project
uses is 22.0. This version was selected as it was the most recent
mainline version released at the start of the Fall Semester 2018.

3.1.2 qw. qw was the first AI agent created that is capable of win-
ning a game of DCSS. It reportedly wins games using the character

configuration of Deep Dwarf Berserker at a rate of approximately
17%. [18]

The bot is structured like an expert system; it contains knowl-
edge sources such as a dictionary associating monsters with their
“scariness” and functions that are hard coded to return valueweights
for item comparison.

qw features goal seeking behavior similar to that of the Angband
“Borg”, where smaller goals, such as finding a downward staircase
or escaping from a dangerous monster take place sequentially as
necessary on the way to larger, more overarching goals, such as
finding the three runes of Zot necessary to win the game.

3.1.3 scikit-learn. Scikit-learn is an open source, Python based
machine learning framework that allows users to easily implement
machine learning. [8] It was selected due to its ease of implementa-
tion and the wide availability of guides on getting it up and running.

Two kinds of machine learning were attempted with scikit-learn
for this project: Stochastic Gradient Descent (SGD) and Logistic
Regression with Cross Validation (LogisticRegressionCV). SGD was
selected for its speed and efficiency at processing large sets of data
[9], and LogisticRegressionCV for its accuracy and ease of tuning
hyperparameters due to built in cross validation. [10]

The two applied machine learning algorithms will be performing
classification: classifying whether given permutations of monster
scariness weights are likely to lead to a successful run of the first
floor of the dungeon or not.

3.2 Optimization Focus
Instead of attempting to optimize all of qw for all of the game of
DCSS, this project aims to reduce the scope of experimentation. In
experimental trials, it took several minutes for qw to complete a
playthrough of DCSS, so instead of optimizing qw’s performance
for the whole game, the project aims to optimize the success of the
bot at traversing the first floor of the dungeon. DCSS allows for a
wide variety of starting character permutations The trials will all be
conducted Additionally, the focus of the optimization itself will be
on a particular knowledge source within qw: the monster scariness
function, which returns a value corresponding to the threat level
of a given monster.

3.2.1 D 1. D 1 is the in-game name for the first floor of the dun-
geon. By focusing on optimizing qw’s success at traversing D:1,
a few things are made easier. Runs of qw on the first floor take
approximately 3 seconds to complete on the hardware utilized for
this project; this allows for much faster data collection and result
validation than if the entire game was the focus. Additionally, there
is a small subset of monsters that will appear on the first floor of the
dungeon in the course of normal gameplay. This small subset acts
as a sort of natural feature selection so as to simplify the amount of
monsters under consideration when attempting different scariness
weight permutations.

3.2.2 Character Selection. The first floor of the dungeon has a
drawback for these purposes. qw is so effective with standard char-
acter configurations that the most touted qw character, the Deep
Dwarf Berserker (DDBe), sees a 98% success rate at traversing the
first floor of the dungeon. As the Berserker (Be) class is necessary
to enable the berserk ability to the character from the beginning
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of the game, this project will attempt to optimize a different race
of Be for the first floor. The character race of “human” (Hu) was
selected, due to its relatively lower proficiencies compared to the
DD. Additionally, DD features a powerful self-healing ability that
Hu lacks, which could also contribute to its incredibly high success
rate.

3.2.3 Monster scariness. Optimizing for proper permutation of
monster scariness was selected as it makes for an interesting de-
cision within the confines of the first floor of the dungeon. qw,
when evaluating its strategy against a given threat, appraises the
“scariness” rating of a monster, an integer between 1 and 27. If this
integer is higher than the player’s level, qw will attempt to initiate
combat by berserking. This powerful ability gives the player char-
acter extra damage in combat, increases their attack and movement
speed, and prevents them from taking actions outside of movement,
attacking, butchering corpses, and eating. In addition to restricted
actions while berserking, there are costs associated with it: the char-
acter loses satiation, pushing them closer to starvation, and after
berserking the character often becomes paralyzed for 4-7 turns,
preventing them from taking actions while monsters can still attack
them. Additionally, the character is slowed after berseking, and is
unable to berserk again for a period of time. While the combat boon
of berserking is necessary to survive some encounters, especially
early in the dungeon when other resources are limited, it is not
a one sided endeavor, and berserking too frequently can lead to
premature death for an adventurer delving the depths of the DCSS
dungeon. As such, the decision of whether or not to berserk is an
interesting one, especially within the context of the first floor of
the dungeon.

3.3 Hardware Utilization & Parallelization
To collect enough data to properly utilize machine learning, parallel
hardware was used to run many trials of crawl simultaneously. qw
is embodied in a configuration file known as an “rc file”, i.e. qw.rc.
Different permutations of qw were stored on a central head node
of the Al-Salam cluster. These permutations varied by the scariness
weights assigned to the different encounter-able monsters on the
first floor. When a game of crawl ends or saves, a morgue file
is created. These morgue files have different file-name structures
based onwhether the character in questionwas alive or dead at their
creation. The cluster’s head node sent out simultaneous instructions
to run DCSS on the 12 compute nodes of the Al-Salam cluster, with
each node assigned a different rc file with which to run qw. Seeds
were utilized to ensure reproducibility; seeds in sequence from 1 to
n were utilized, where n was the given amount of runs for a batch
of trials. The morgue files created were then scanned by a script run
from the head node, and data was collected in the form of a binary
success/failure ratio for each permutation of scariness weights. See
figure 3 for a diagram detailing the parallelization process. This
data was used to train the machine learning models.

3.4 Scikit-learn and Python
The scikit-learn pipeline used to generate classification models is
rather straightforward. A Python dictionarywas created associating
run tags (unique identifiers given to each set of trials) with lists.
These lists contain further lists, which contain integer values of

Figure 3: This figure depicts the process by which data was
collected. A head node sent out simultaneous instructions
to run DCSS on the 12 compute nodes of the Al-Salam clus-
ter. When a game finished the first floor of the dungeon, a
morgue filewas created and the results were sent to the head
node. In some trials, the head node ran DCSS processes as
well.

wins and losses, alongside the permutation of scariness weights for
the given node on the given run. This dictionary was then iterated
through to produce two NumPy arrays, one of shape (x, y) where
x is the total number of runs completed and y is the permutation
of weights for each given run, to serve as a samples array, and the
other array of shape (x, 1), to serve as a target array, with each
element being a 1 or 0, corresponding with success or failure for
the equivalent row in the samples array.

These arrays were then used to train a classifier, either using
SGD or LogisticRegressionCV.

After training, an additional list of every possible permutation
of the 10 scariness weights in question was created. This list was
iterated over, and each possible permutation was stored alongside
the probability of the permutation being a 1 (success), determined by
the trained classifier. The permutation with the highest probability
of success was then extracted from the final list, and a new rc file
was created with those values. These new rc files were used to run
more trials of qw to compare relative rates of success between the
machine learning selected models and the training data.

Since SGD operates stochastically, different permutations were
noted to have the highest probability of success after training the
model on the same data with the same hyperparameters different
times. Three different models were generated and tested. Logisti-
cRegressionCV lacks this variation, and produced the same model
when run on the training data multiple times. This model was also
tested for success. The following section will catalog both the re-
sults of the training runs and the results of the permutations created
with scikit-learn.
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4 RESULTS
First, the data collected in training will be documented. Note that
while nodes were instructed to run round numbers of trials (e.g.
on seeds 1-10000), there was some level of unpredictable failure
stemming from bugs in the code.

4.1 Scariness Encoding
Scariness ratings for 10 monsters on the first floor of the dungeon
were encoded in a string of ten integers, each corresponding to
a monster. These strings were used to create the models on the
training data. Monster names and their corresponding index are
shown below.

Monster Name Index
Adder 0
Bat 1

Giant Rat 2
Gnoll 3
Goblin 4

Hobgoblin 5
Jackal 6
Kobold 7

Leopard Gecko 8
Worm 9

As an example, the default scariness encoding of qw for the
monsters of the first floor of the dungeon puts gnolls at 5, worms at
4, and no other monsters have any values. This is encoded thusly:

Default Scariness Values
Monster Name Scariness Value

Adder 0
Bat 0

Giant Rat 0
Gnoll 5
Goblin 0

Hobgoblin 0
Jackal 0
Kobold 0

Leopard Gecko 0
Worm 4

4.2 Training Data
With scariness weight set to 2, qw will use the berserking strategy
only against the selected monster if the character level is at 1.

Scariness Weight Set To 2
Node Trials Deaths Scariness Emphasis Rate of Success
as1 8871 457 Adder 94.85%
as2 8851 500 Bat 94.35%
as3 8870 8409 Giant Rat 94.80%
as4 8894 405 Gnoll 95.45%
as5 8866 484 Goblin 94.54%
as6 8875 449 Hobgoblin 94.94%
as7 8867 461 Jackal 94.80%
as8 8898 408 Kobold 95.41%
as9 8876 452 Leopard Gecko 94.91%
as10 8875 452 Worm 94.91%
as11 8868 475 All Monsters 94.64%
Total 97611 5004 Average 94.87%

With scarinessweight set to 3, qwwill use the berserking strategy
against the selectedmonster if the character level is at 1 or 2. Slightly
stronger characters will be willing to berserk against threats in these
trials.

Scariness Weight Set To 3
Node Trials Deaths Scariness Emphasis Rate of Success
as1 4932 250 Adder 94.93%
as2 487 35 Bat 92.81%
as3 489 27 Giant Rat 94.48%
as4 494 16 Gnoll 96.76%
as5 72 1 Goblin 98.61%
as6 494 25 Hobgoblin 94.94%
as7 4922 273 Jackal 94.45%
as8 4945 220 Kobold 95.55%
as9 491 26 Leopard Gecko 94.70%
as10 4923 249 Worm 94.94%
as11 4920 286 All Monsters 94.19%
Total 27169 1408 Average 95.12%

The maximum level a character can reach on the first floor of
the dungeon is 3. Therefore, any scariness weight set to 4 or higher
will have equivalent results for a character piloted by qw on the
first floor of the dungeon.
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Scariness Weight Set To 5
Node Trials Deaths Scariness Emphasis Rate of Success
as0 29717 1174 Default Behavior 96.05%
as1 8871 446 Adder 94.97%
as2 8851 590 Bat 93.33%
as3 8870 461 Giant Rat 94.80%
as4 8895 354 Gnoll 96.02%
as5 8865 488 Goblin 94.50%
as6 8875 457 Hobgoblin 94.85%
as7 8867 493 Jackal 94.44%
as8 8897 410 Kobold 95.39%
as9 8876 446 Leopard Gecko 94.98%
as10 8875 446 Worm 94.97%
as11 8868 510 All Monsters 94.25%
as12 8870 460 Never berserk 94.81%
Total 136197 Average 94.87%

4.3 SGD Derived Scariness Values
Three versions of SGD derived scariness weights were tested. Fol-
lowing are those weight assignments and their results.

4.3.1 SGD_1. Following are the derived weights from the first
utilization of SGD.

SGD_1 Scariness Values
Monster Name Scariness Value

Adder 4
Bat 0

Giant Rat 4
Gnoll 4
Goblin 0

Hobgoblin 0
Jackal 4
Kobold 4

Leopard Gecko 0
Worm 4

The results from trials run with these weights are as follows.
These trials were runwith random seeds so as to confirm themodels
were not over-fitting to the input data based on the first n seeds.

SGD_1 Success Rates
Node Trials Deaths Rate of Success
as2 494 21 95.75%
as3 492 24 95.12%
as4 496 15 96.98%
as5 496 23 95.36%
as6 496 20 95.97%
Total 2474 103 Average 95.84%

4.3.2 SGD_2. Following are the derived weights from the second
utilization of SGD.

SGD_2 Scariness Values
Monster Name Scariness Value

Adder 4
Bat 0

Giant Rat 4
Gnoll 4
Goblin 0

Hobgoblin 4
Jackal 4
Kobold 4

Leopard Gecko 0
Worm 0

The results from trials run with these weights are as follows.
These trials were runwith random seeds so as to confirm themodels
were not over-fitting to the input data based on the first n seeds.

SGD_2 Success Rates
Node Trials Deaths Rate of Success
as2 9875 483 95.11%
as3 9858 539 94.53%
as4 9893 464 95.31%
as5 9893 432 95.63%
as6 9875 470 95.24%
Total 49394 2388 Average 95.17%

4.3.3 SGD_3. Following are the derived weights from the third
and final utilization of SGD.

SGD_3 Scariness Values
Monster Name Scariness Value

Adder 0
Bat 0

Giant Rat 0
Gnoll 4
Goblin 4

Hobgoblin 0
Jackal 0
Kobold 0

Leopard Gecko 0
Worm 0

The results from trials run with these weights are as follows.
These trials were runwith random seeds so as to confirm themodels
were not over-fitting to the input data based on the first n seeds.

SGD_3 Success Rates
Node Trials Deaths Rate of Success
as2 9874 449 95.45%
as3 9880 435 95.60%
as4 9901 382 96.14%
as5 9899 410 95.83%
as6 9897 363 96.33%
Total 49451 2039 Average 95.88%

4.4 LogisticRegressionCV Derived Scariness
Values

Following are the derived weights from LogisticRegressionCV.
7



LogisticRegressionCV Scariness Values
Monster Name Scariness Value

Adder 0
Bat 0

Giant Rat 0
Gnoll 4
Goblin 0

Hobgoblin 0
Jackal 0
Kobold 4

Leopard Gecko 0
Worm 4

The results from trials run with these weights are as follows.
These trials were runwith random seeds so as to confirm themodels
were not over-fitting to the input data based on the first n seeds.

SGD_3 Success Rates
Node Trials Deaths Rate of Success
as1 2379 90 96.22%
as2 2383 86 96.39%
as3 2374 105 95.58%
as4 2367 113 95.23%
as5 2376 93 96.09%
as6 2378 96 95.96%
as7 2375 99 95.83%
as8 2370 85 96.41%
as9 2374 91 96.17%
as10 2379 79 96.68%
as11 2383 88 96.31%
as12 2372 79 96.67%
Total 28510 1104 Average 96.13%

4.5 Comparison and Analysis
Figure 4 depicts the success rates of the different scariness distri-
butions derived by the machine learning models, with the default
results included for comparison’s sake.

Statistical analysis of results was conducted with Chi-squared
testing at a significance level equal to 0.05. The first SGD model
was 1.01% worse than the default behavior with P = 0.0141. The
second SGD model was 0.88% worse than the default behavior
with P < 0.0001. The third SGD model is similar to the default
behavior; it is 0.17% smaller, but with P = 0.2404, we cannot reject
the null hypothesis. The LogisticRegressionCV model performed
0.08% higher than the default behavior, but P = 0.6186. Therefore,
that model does not show a statistically significant difference in
performance from the default behavior.

5 CONCLUSION
Hundreds of thousands of data points were collected using various
monster scariness weights. These data points were fed into Scikit-
learn, and models were created and utilized to attempt to find more
optimal distributions of scariness weights to improve one of qw’s
knowledge sources, thus improving its performance when that
knowledge was handed off to the subsystem in charge of combat
strategy.

Figure 4: This chart shows the difference in success rates
between the trials run on the machine learning optimized
scariness weights. Error bars shown are calculated standard
error for each series.

The attempted optimizations of qwâĂŹs berserk logic failed to
improve the success of HuBe’s in traversing the first floor of the
dungeon. Initial testing with a weaker character race, Deep Elves
(DE’s), shows promise that the LogisticRegressionCV model can
indeed create significant performance improvements for the focused
optimization. Under default behavior, Deep Elf Berserkers (DEBe’s)
succeeded at a rate of 86.86%, much less than the Human rate of
96.05%. DEBe testing showed a 2.16% improvement (up to 89.02%)
in success rate with P = 0.0028, showing statistically significant
improvement. This indicates that such optimization methods may
be more impactful when initial rates of success are lower.

5.1 Future Work
Further tuning of hyperparameters could improve the results of
SGD modeling, which produced substandard results. Additionally,
some features could be pruned to improve performance - monsters
like bats, for instance, could simply always be set to null, as no
model suggested they should be feared.

Creating models from data based on weaker character races
shows promise based on initial DEBe analysis. By lowering initial
success rates of the bot, further room for improvement is available.

This same sort of knowledge source tuning could be performed
for different parts of qw, optimizing progression through more of
the game than the first floor. For instance, item valuation weights
could be looked at to judge which items are more effective over-
all. Other, larger strategic choices such as optional rune branch
selection could also be areas of interest.

These techniques also have potential applications for software
optimization in fields unrelated to gaming, such as search and
rescue drone navigation. The promise shown by the initial tests of
DEBe on the LogisticRegressionCV sourced weights indicates that
this form of machine learning can lead to significant improvements
in the performance of expert systems under various metrics.
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