
Crawl-O-Matic-O-Matic: Automated Optimization of AI

Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet. Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt 
ut laoreet. Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet, adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet. 
Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet. 

Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet. Consect adipiscing elit, sed diam nonummy nibh euismod 
tincidunt ut laoreet. Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet, adipiscing elit, sed diam nonummy nibh euismod tincidunt ut 
laoreet. Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet. 

Photo(s) or graph(s)

Eli Ramthun (ebramth15@earlham.edu)
Earlham College Department of Computer Science

Richmond, IN 47374

h

Introduction
Abstract
This  project involves utilizing machine learning 
techniques to attempt to optimize an already 
existing artificial intelligence (AI) agent that plays 
the roguelike game Dungeon Crawl Stone Soup 
(DCSS).1 Roguelike games feature high levels of 
randomization and are notoriously difficult - 
0.73% of DCSS games played online are winning 
games.2 An AI agent has been developed that is 
capable of winning a game of DCSS without 
human assistance. This project aims to utilize 
machine learning to automatically tune the 
agent to improve its performance for a certain 
portion of the game.
Background
AI’s designed to beat roguelike games have 
existed almost as long as the games themselves 
- the “expert system” Rog-O-Matic was 
developed to beat the game Rogue (1980) as 
early as 1985.3 Machine learning strategies have 
been effectively employed to optimize AI for 
games from chess4 to other roguelikes such as 
Desktop Dungeons.5

This sort of expert system optimization has 
applications outside of automatic gameplay. In a 
2005 work titled “Dynamic Asset Protection & 
Risk Management Abstraction Study”, a team of 
researchers created a compelling case for the 
application of expert systems for purposes such 
as automated computer network security as a 
response to unpredictable threats, specifically 
naming Rog-O-Matic as an example system.6

Hypothesis
Utilizing machine learning techniques, a 
more optimal set of weights for the danger 
level of monsters in DCSS can be ascertained 
so as to improve the ability of qw to succeed 
in clearing the first floor of the dungeon.

This project seeks to optimize qw’s berserk logic on the 
first floor of the dungeon. Figure 1 depicts the game.
Berserk Logic
● Berserking is essential for survival in some cases, but 

has serious - sometimes lethal - drawbacks 
● qw’s logic for berserking is numerical and well suited 

for computation: 
○ if player.level < monster.scariness, then berserk

First Floor
● Small set of possible monsters to encounter (≈12)
● Completing the first floor of the dungeon takes only a 

few seconds, enabling generation of large amounts of 
data and faster validation

● Considered one of the more interesting and 
challenging segments of the game for human players

Discussion
Statistical analysis of results was conducted 
with Chi-squared testing at a significance level 
equal to 0.05.
● The first SGD model was 1.01% worse than 

the default behavior with P = 0.0141.
● The second SGD model was 0.88% worse 

than the default behavior with P < 0.0001.
● The third SGD model is similar to the default 

behavior; it is 0.17% smaller, but with P = 
0.2404, we cannot reject the null hypothesis.

● The LogisticRegressionCV model performed 
0.08% higher than the default behavior, but  
P = 0.6186. Therefore, the model does not 
show a statistically significant difference in 
performance from the default behavior.
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Software Components
DCSS - open source turn-based game with 
procedurally generated content and 
permanent character death
qw - Expert AI hand coded to beat crawl with 
victory rate of approximately 17%7

Scikit-learn - open source, python based 
machine learning toolkit used computer 
optimum values for qw’s parameters8

Bash - used to run crawl and aggregate data

Figure 1. Beginning of a game of DCSS. The player character 
is wearing green boots and wielding a sword; three exits are 
visible, and a fierce gnoll wielding a halberd threatens the 
player’s progression further into the dungeon.

Hardware and Software

Figure 2. This figure depicts the process by which data was 
collected. A head node sent out simultaneous instructions to run 
DCSS on the 12 compute nodes of the Al-Salam cluster. When a 
game finished the first floor of the dungeon, a morgue file was 
created and the results were sent to the head node.

Table 2. Since SGD generates models using some amount of randomness, multiple models created from the same data can vary. By tuning the hyperparameters of the model, even 
more variance can be introduced. Logistic Regression with Cross Validation will give a fixed result for given input data, and it performs cross validation of different hyperparameters 
to determine the most effective combination. In this table, monster scariness values are listed under the sprites of the given monster for a given experiment, with higher numbers 
and redder squares representing scarier monsters and increased likelihood of berserking. The results of default settings are included for comparison.

● The attempted optimizations of qw’s berserk 
logic failed to improve the success of human 
berserkers in traversing the first floor of the 
dungeon.

● Initial testing with a weaker character race, 
Deep Elves, shows promise that the 
LogisticRegressionCV model can indeed 
create significant performance 
improvements for the focused optimization.

● Deep Elf testing showed a 2.16% 
improvement in success rate with P = 0.0028, 
showing statistically significant improvement.

● Under default behavior, Deep Elves 
succeeded at a rate of 86.86%, much less 
than the Human rate of 96.05%.

● This indicates that such optimization 
methods may be more impactful when initial 
rates of success are lower.

Software Components

Future Work
● Further tuning of hyperparameters could 

improve the results of SGD modeling.
● Creating models from data based on weaker 

character races shows promise based on 
initial Deep Elf analysis.

● This sort of parameter tuning could be 
performed for different parts of qw, 
optimizing progression through more of the 
game than the first floor.

● These techniques also have potential 
applications for software optimization in 
fields unrelated to gaming, such as search 
and rescue drone navigation.
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Hypothesis

Optimization Focus

Parallelization & Data Collection
Figure 2 depicts the parallelized process for data collection. Table 1 depicts the data collected for training.

Node Trials Wins Deaths Scariness Emphasis Scariness encoding Rate of Success
as0 8902 8539 363 qw Default Behavior 0005000003 95.92%
as1 8871 8425 446 Adder 5000000000 94.97%
as2 8851 8261 590 Bat 0500000000 93.33%
as3 8870 8409 461 Giant Rat 0050000000 94.80%
as4 8895 8541 354 Gnoll 0005000000 96.02%
as5 8865 8377 488 Goblin 0000500000 94.50%
as6 8875 8418 457 Hobgoblin 0000050000 94.85%
as7 8867 8374 493 Jackal 0000005000 94.44%
as8 8897 8487 410 Kobold 0000000500 95.39%
as9 8876 8430 446 Leopard Gecko 0000000050 94.98%

as10 8875 8429 446 Worm 0000000005 94.97%
as11 8868 8358 510 PANIC! Always berserk 5555555555 94.25%
as12 8870 8410 460 Null - Never berserk 0000000000 94.81%

Total 115382 Average 94.8648%

Table 1. This table depicts some of the collected data used to train the machine learning models. This 
table shows results for 115,382 runs of the first floor of DCSS, alongside the different berserk strategies 
tested. These (and other) results were aggregated and used to train machine learning models. A total 
of 260,977 data points were generated prior to training. All training runs were conducted using the 
race/class combination “Human Berserker.”

Results

Experiment Trials Success Rate

Default Settings 0 0 0 5 0 0 0 0 0 4 29,717 96.05%

SGD_1 4 0 4 4 0 0 4 4 0 4 2,474 95.04%

SGD_2 4 0 4 4 0 4 4 4 0 0 49,394 95.17%

SGD_3 0 0 0 4 4 0 0 0 0 0 49,451 95.88%

LogisticRegressionCV 0 0 0 4 0 0 0 4 0 4 28,510 96.13%

Machine learning models were generated using the collected data as input. The first three models were 
generated with Scikit-learn’s Stochastic Gradient Descent (SGD) classifier, and another model was generated 
with Scikit-learn’s Logistic Regression Cross Validation classifier. After creating models, every possible 
permutation of monster scariness weights was tested and the highest probability weight for each model was 
selected for trials. Table 2 contains the results of these trials.

Analysis

Discussion

Future Work


