
Crawl-O-Matic-O-Matic: Automated Optimization of AI

Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet. Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet. Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet, adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet.
Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet.

Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet. Consect adipiscing elit, sed diam nonummy nibh euismod
tincidunt ut laoreet. Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet, adipiscing elit, sed diam nonummy nibh euismod tincidunt ut
laoreet. Consect adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet.

Photo(s) or graph(s)

Eli Ramthun (ebramth15@earlham.edu)
Earlham College Department of Computer Science

Richmond, IN 47374

h

Introduction
Abstract
This project involves utilizing machine learning
techniques to attempt to optimize an already
existing artificial intelligence (AI) agent that plays
the roguelike game Dungeon Crawl Stone Soup
(DCSS).1 Roguelike games feature high levels of
randomization and are notoriously difficult -
0.73% of DCSS games played online are winning
games.2 An AI agent has been developed that is
capable of winning a game of DCSS without
human assistance. This project aims to utilize
machine learning to automatically tune the
agent to improve its performance for a certain
portion of the game.
Background
AI’s designed to beat roguelike games have
existed almost as long as the games themselves
- the “expert system” Rog-O-Matic was
developed to beat the game Rogue (1980) as
early as 1985.3 Machine learning strategies have
been effectively employed to optimize AI for
games from chess4 to other roguelikes such as
Desktop Dungeons.5

This sort of expert system optimization has
applications outside of automatic gameplay. In a
2005 work titled “Dynamic Asset Protection &
Risk Management Abstraction Study”, a team of
researchers created a compelling case for the
application of expert systems for purposes such
as automated computer network security as a
response to unpredictable threats, specifically
naming Rog-O-Matic as an example system.6

Hypothesis
Utilizing machine learning techniques, a
more optimal set of weights for the danger
level of monsters in DCSS can be ascertained
so as to improve the ability of qw to succeed
in clearing the first floor of the dungeon.

This project seeks to optimize qw’s berserk logic on the
first floor of the dungeon. Figure 1 depicts the game.
Berserk Logic
● Berserking is essential for survival in some cases, but

has serious - sometimes lethal - drawbacks
● qw’s logic for berserking is numerical and well suited

for computation:
○ if player.level < monster.scariness, then berserk

First Floor
● Small set of possible monsters to encounter (≈12)
● Completing the first floor of the dungeon takes only a

few seconds, enabling generation of large amounts of
data and faster validation

● Considered one of the more interesting and
challenging segments of the game for human players

Discussion
Statistical analysis of results was conducted
with Chi-squared testing at a significance level
equal to 0.05.
● The first SGD model was 1.01% worse than

the default behavior with P = 0.0141.
● The second SGD model was 0.88% worse

than the default behavior with P < 0.0001.
● The third SGD model is similar to the default

behavior; it is 0.17% smaller, but with P =
0.2404, we cannot reject the null hypothesis.

● The LogisticRegressionCV model performed
0.08% higher than the default behavior, but
P = 0.6186. Therefore, the model does not
show a statistically significant difference in
performance from the default behavior.

References: [1] “Dungeon Crawl Stone Soup.” [Online]. Available: https://crawl.develz.org/. [2] Colin, Analyzing completed games ('morgue files’) of Dungeon Crawl Stone Soup: colinmorris/crawl-coroner.
2018. [3] A. K. Dewdney, “An expert system outperforms mere mortals as it conquers the feared dungeons of doom,” 25-Jun-2016. [Online]. [4] T. Mitsuta and L. M. Schmitt, “Optimizing the Performance of
GNU-chess with a Genetic Algorithm,” in Proceedings of the 13th International Conference on Humans and Computers, Fukushima-ken, Japan, Japan, 2010, pp. 124–131. [5]V. Cerny and F. Dechterenko,
“Rogue-Like Games as a Playground for Artificial Intelligence – Evolutionary Approach,” in Entertainment Computing - ICEC 2015, 2015, pp. 261–271. [6] G. Henderson, E. Bacic, and M. Froh, “Dynamic Asset
Protection & Risk Management Abstraction Study,” p. 50, 2005. [7] G. Henderson, E. Bacic, and M. Froh, “Dynamic Asset Protection & Risk Management Abstraction Study,” p. 50, 2005. [8] elliptic, The
DCSS-playing bot qw. 2018.

Software Components
DCSS - open source turn-based game with
procedurally generated content and
permanent character death
qw - Expert AI hand coded to beat crawl with
victory rate of approximately 17%7

Scikit-learn - open source, python based
machine learning toolkit used computer
optimum values for qw’s parameters8

Bash - used to run crawl and aggregate data

Figure 1. Beginning of a game of DCSS. The player character
is wearing green boots and wielding a sword; three exits are
visible, and a fierce gnoll wielding a halberd threatens the
player’s progression further into the dungeon.

Hardware and Software

Figure 2. This figure depicts the process by which data was
collected. A head node sent out simultaneous instructions to run
DCSS on the 12 compute nodes of the Al-Salam cluster. When a
game finished the first floor of the dungeon, a morgue file was
created and the results were sent to the head node.

Table 2. Since SGD generates models using some amount of randomness, multiple models created from the same data can vary. By tuning the hyperparameters of the model, even
more variance can be introduced. Logistic Regression with Cross Validation will give a fixed result for given input data, and it performs cross validation of different hyperparameters
to determine the most effective combination. In this table, monster scariness values are listed under the sprites of the given monster for a given experiment, with higher numbers
and redder squares representing scarier monsters and increased likelihood of berserking. The results of default settings are included for comparison.

● The attempted optimizations of qw’s berserk
logic failed to improve the success of human
berserkers in traversing the first floor of the
dungeon.

● Initial testing with a weaker character race,
Deep Elves, shows promise that the
LogisticRegressionCV model can indeed
create significant performance
improvements for the focused optimization.

● Deep Elf testing showed a 2.16%
improvement in success rate with P = 0.0028,
showing statistically significant improvement.

● Under default behavior, Deep Elves
succeeded at a rate of 86.86%, much less
than the Human rate of 96.05%.

● This indicates that such optimization
methods may be more impactful when initial
rates of success are lower.

Software Components

Future Work
● Further tuning of hyperparameters could

improve the results of SGD modeling.
● Creating models from data based on weaker

character races shows promise based on
initial Deep Elf analysis.

● This sort of parameter tuning could be
performed for different parts of qw,
optimizing progression through more of the
game than the first floor.

● These techniques also have potential
applications for software optimization in
fields unrelated to gaming, such as search
and rescue drone navigation.

Thanks to Dr. David Barbella for his motivational and informative advising, Dr. Xunfei Jiang for her constant guidance and leadership, and Dr.
Jose-Ignacio Pareja for his inspiration and encouragement. Additional thanks to all of my peers in the computer science department and to the
DCSS community, including the ##crawl and ##crawl-dev IRC channels. Special thanks to Sigmund for staying out of the first floor of the dungeon.

Acknowledgements

Hypothesis

Optimization Focus

Parallelization & Data Collection
Figure 2 depicts the parallelized process for data collection. Table 1 depicts the data collected for training.

Node Trials Wins Deaths Scariness Emphasis Scariness encoding Rate of Success
as0 8902 8539 363 qw Default Behavior 0005000003 95.92%
as1 8871 8425 446 Adder 5000000000 94.97%
as2 8851 8261 590 Bat 0500000000 93.33%
as3 8870 8409 461 Giant Rat 0050000000 94.80%
as4 8895 8541 354 Gnoll 0005000000 96.02%
as5 8865 8377 488 Goblin 0000500000 94.50%
as6 8875 8418 457 Hobgoblin 0000050000 94.85%
as7 8867 8374 493 Jackal 0000005000 94.44%
as8 8897 8487 410 Kobold 0000000500 95.39%
as9 8876 8430 446 Leopard Gecko 0000000050 94.98%

as10 8875 8429 446 Worm 0000000005 94.97%
as11 8868 8358 510 PANIC! Always berserk 5555555555 94.25%
as12 8870 8410 460 Null - Never berserk 0000000000 94.81%

Total 115382 Average 94.8648%

Table 1. This table depicts some of the collected data used to train the machine learning models. This
table shows results for 115,382 runs of the first floor of DCSS, alongside the different berserk strategies
tested. These (and other) results were aggregated and used to train machine learning models. A total
of 260,977 data points were generated prior to training. All training runs were conducted using the
race/class combination “Human Berserker.”

Results

Experiment Trials Success Rate

Default Settings 0 0 0 5 0 0 0 0 0 4 29,717 96.05%

SGD_1 4 0 4 4 0 0 4 4 0 4 2,474 95.04%

SGD_2 4 0 4 4 0 4 4 4 0 0 49,394 95.17%

SGD_3 0 0 0 4 4 0 0 0 0 0 49,451 95.88%

LogisticRegressionCV 0 0 0 4 0 0 0 4 0 4 28,510 96.13%

Machine learning models were generated using the collected data as input. The first three models were
generated with Scikit-learn’s Stochastic Gradient Descent (SGD) classifier, and another model was generated
with Scikit-learn’s Logistic Regression Cross Validation classifier. After creating models, every possible
permutation of monster scariness weights was tested and the highest probability weight for each model was
selected for trials. Table 2 contains the results of these trials.

Analysis

Discussion

Future Work

