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ABSTRACT
Over the past decade, political campaigns have been increasingly
waged on not only news sites but also social media networks. How-
ever, there have been ongoing concerns regarding how one’s politi-
cal opinions affect the information they were fed online towards
the 2016 presidential election result. Researches in sentiment anal-
ysis and political bias detection have been using Recurrent Neural
Network (Long Short-Term Memory) to achieve results with high
accuracy. Recently, Multilayer Perceptron (MLP) and Convolutional
Neural Networks (CNN) have appeared as deep learning models
with promising results in the field of natural language processing,
deviating away from the traditional solutions of Recurrent Neural
Networks. This study aims to take a different technical approach to
the problem of political bias detection using Multilayer Perceptron
model. The word embedding matrix for the MLP model is initial-
ized with Facebook’s fastText word vector representation model.
The resulting classifier is implemented in a browser tracking sys-
tem, specifically a Google Chrome extension, which can perform
an extensive scan whenever users navigate to a news article. The
extension then determines the ideological components of the ar-
ticle, in percentages of conservative, liberal or neutral sentences.
The training dataset is the Ideological Books Corpus (IBC), which
consists of 4,062 sentences annotated for political ideology at a
sub-sentential level. Results show that: the MLP model achieved an
F1 score of 81% on the test dataset, higher than that obtained by
an RNN model (72%). Real-time political news classification using
the MLP classifier did not yield promising results, however. This
can be attributed to the use of metaphors and negative phrases in
articles, along with the model’s inability to consider the relation
between adjacent words. Further research is necessary in order to
achieve a complete, finalized political bias detection system.
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1 INTRODUCTION
The current political climate in the United States is sharply divided
into two major ideologies: liberal and conservative, represented by
the Democratic and Republican parties, respectively. These two po-
litical parties advance different policies reflecting opposite opinions
on various social issues. In the era of massive social media usage,
such ideologies are disseminated at an unprecedented rate. There
have been a plethora of active and engaging political discussions

on media feeds, backed by various sources of public debates, inter-
views, and speeches. Specifically, during the 2016 US presidential
election, political campaigns were increasingly waged on news sites
and social media networks, hence the name "the social media elec-
tion" [7]. This phenomenon gave rise to a nontrivial problem and
an ongoing concern about how one‘s political position affects the
type of contents on their social media feeds. People with certain po-
litical opinions get fed news and information supporting the same
political viewpoints, and thus creating an ideological bubble that
hinders them from a subjective, neutral information environment.
Over time, this process reinforces personal biases, given the fact
that political parties‘ agendas are biased over different issues.

At the same time, Natural Language Processing (NLP) and opin-
ion mining are becoming more and more popular in solving tasks
of analyzing private states such as opinions, sentiment, and beliefs
from texts. The sudden eruption of interest in the area of opin-
ion mining and sentiment analysis has also encouraged studies in
building applications that deal directly with opinion classification
[22]. Detecting political bias, which was conceived to be nontrivial,
has been the main topic of interest for many scholars in the NLP
community over recent years. A variety of machine learning and
deep learning techniques were applied to solve the task, including:
Support Vector Machine (SVM) [2] [28], Recursive Neural Networks
(RvNN) [13], Recurrent Neural Networks (RNN) [21], etc.

In recent years, Multilayer Perceptron (MLP) along with Convo-
lutional Neural Networks (CNN) have gained popularity within the
field of NLP for their promising results. MLP models are effective
for various NLP problems and achieved excellent results in semantic
parsing[11], sentence modeling[15], classification[18] [16], predic-
tion [8] and other traditional NLP tasks[9]. Given these promising
results, this study uses MLP to solve the current problem of political
bias detection, contributing to the existing body of works that use
neural networks to detect political ideologies. It also implements
an application (a web browser extension) which can utilize such
framework to perform real-time political ideologies classification.

The remaining of this paper is structured as follows: Section 2
discusses relevant literature in the subject of political ideologies
classification, with three dominant models being Recursive Neural
Network (RvNN), Recurrent Neural Network (RNN) and Hidden
Markov Model (HMM). Section 3 outlines the designs of different
components and modules in this study. Software implementations
and experiment results are discussed in section 4. Finally, section 5
presents the conclusion of this study along with future directions.

2 RELATEDWORKS
Much research in the NLP community has been conducted in recent
years to build efficient machine learning models that can accurately



classify political opinions. For instance, Iyyer et al. [13] developed
a Recursive Neural Network (RvNN) model to create an Ideological
Book Corpus (IBC) [14], which labels sentences and phrases based
on their political ideologies. Their neural network was proven
to outperform contemporary methods (bag-of-words models and
hand-designed lexica) at the task given. Other studies were able
to produce state-of-the-art models with a robust performance [21],
label and determine inter-relationships between political debates
[22], and determine ideological proportions of speeches [26]. In this
section, we examine some of the current approaches in political
bias detection with the use of machine learning techniques. Table
1 is a summary of the technology and their abbreviations that are
used in this section.

Table 1: Abbreviations and terms

Abbreviation Full term
NLP Natural Language Processing
RvNN Recursive Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
HMM Hidden Markov Model
MLP Multilayer Perceptron
CNN Convolutional Neural Network
IBC Ideological Book Corpus

2.1 Recursive Neural Network (RvNN)
Iyyer et al. developed a recursive neural network (RvNN) [13] to
identify the political position evinced by a sentence, a problem
where previous work relies heavily on bag-of-words models and
hand-designed lexica. Their approach was to break sentences into
smaller semantic compositions, which RvNNs can model. The prin-
ciple is that sentences are composed of phrases, and a phrase‘s
meaning is a combination of the meaning of the words within that
phrase and the syntax that connects those words. As a result, most
ideological bias can only be detected at higher levels of a sentence
tree (as shown in Figure 1).

Figure 1: An example of compositionality in ideological bias
detection (red → conservative, blue → liberal, gray → neu-
tral) in which modifier phrases and punctuation cause po-
larity switches at higher levels of the parse tree. [13]

The basicmechanism behind their RvNNmodel is the use of word
vectors. Each word w is represented by a vector xw ∈ Rd . Based
on a parse tree, these words form phrases p. Each of these phrases
also has an associated vector xp ∈ Rd of the same dimension as
the word vectors. These phrase vectors represent the meaning of
the phrases composed of individual words. As phrases themselves
merge into complete sentences, the underlying vector representa-
tion is trained to retain the sentence‘s meaning. They then divide
the vector space into two smaller vector spaces, xd and xr , which
represent liberal and conservative sentences, respectively. Given
the dataset in the study is labeled, the authors employed super-
vised learning to classify sentence vectors by applying a regression.
The discrepancy between categorical predictions and annotations
is measured through the cross-entropy loss. They then optimized
the model parameters to minimize the cross-entropy loss over all
sentences in the corpus. Through experiments, they concluded that
their RvNN model outperforms the bag-of-words baselines as well
as the word2vec baseline on both datasets (Congressional Debate
Transcripts and their own IBC).

2.2 Recurrent Neural Network (RNN)
Misra et al. used a different approach to solve the task of labeling
political ideologies[21]. Instead of analyzing sentences recursively
from the word level, they employed Recurrent Neural Network,
a generative model which can predict the labels at the end of a
sequence of words.

Labeling ideologies requires capturing long-range correlation
between words in the text because the data loss does not get con-
tributions from every word in the network and is calculated only
at the very last time step and the gradient of the loss has to back-
propagate to the beginning of the sentence. However, traditional
RNNs were not able to propagate the gradient over many time steps
because of the problems of vanishing or exploding gradients [4].
Long Short-Term Memory (LSTM) model, on the other hand, was
capable of solving the problem and was employed for the study.

The basic unidirectional model did not perform as well on the
IBC dataset [14] compared to the RvNNmodel [13]. However, Misra
et al. argued that it was not a shortcoming of the model, but rather
a combination of complexity and lack of volume of the data which
led to the results. They tested their hypothesis by making an OTI
dataset, upon which the single layer, unidirectional LSTM model
was able to achieve better results with an F1 score of 0.718, at par
with the best results on bias and opinion detection available in
contemporary literature [12]. The LSTM model developed works
only marginally better than a bag-of-words approach on the OTI
dataset, because, deep learning based models need a substantially
larger amount of data to outperform the traditional methods of the
domain. However, the RNN model has the potential to be further
developed and become robust enough so that it can be applied to
a variety of different contexts without the need of any detailed
manual labeling, which is always difficult to obtain, as in the RvNN
model[13].
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2.3 Hidden Markov Model (HMM)
Sim et al. approached the task of labeling ideological biases rather
differently than the previous two approaches[26]. They used a Hid-
den Markov Model (HMM) with a low dimensional representation
of political speeches: a speech is a sequence of cues interspersed
with lags, where:

• Cues are terms that are strongly associated with an ideology.
• Lags correspond to the lengths of sequences of non-cue
words, which are treated as irrelevant to the inference prob-
lem at hand.

The HMM employed was called cue-lag ideological propor-
tions (CLIP). Each state in the model corresponds to an ideology
or BACKGROUND. Emission from a state consists of (i) a cue from
the ideological lexicon (L) and (ii) a lag value. In order to capture
the intuition that a longer lag after a cue term should increase the
entropy of the model over the next ideology state, the authors in-
troduced a restart probability in the transition distribution in the
HMM, which is conditioned on the length of the most recent lag.

Testing was based on a set of 14 pre-registered hypotheses pro-
posed by the authors. CLIP correctly identified sixteen LEFT/RIGHT
alignments of primary presidential candidates based on their speech
transcripts, and only failed to determine one candidate‘s political
orientation. There is one systematic issue with CLIP, however. That
is, it associates candidates‘ names with political positions. For exam-
ple: terms mentioning John McCain are associated with the RIGHT,
which makes Obama‘s mentions of his opponent taken as evidence
for rightward positioning; in total, mentions of McCain contributed
4% absolute to Obama‘s RIGHT ideological proportion. Similarly,
barack_obama and president_obama are LEFT cues (though sena-
tor_obama is a RIGHT cue). The authors suggested that filtering
candidates‘ names in the first stage will be beneficial.

3 DESIGN AND IMPLEMENTATION

Figure 2: Framework of the Political News Bias Detection
System

This study focuses on developing a solution to the problem of
political bias detection, using Multilayer Perceptron. As shown in
Figure 2, this project consists of six components:

• Initialization module
• Training module
• Classifier module
• Article text extractor module
• Flask application module
• Google Chrome extension - B(ia)S Detector

The initialization module initializes the word embedding matrix
and passes it to the training module, which utilizes this matrix to
vectorize words and sentences in the training dataset. The resulting
trained classifier is invoked in the classifier module, which then
takes articles’ texts (extracted through the article extractor module)
as its input and returns a percentage breakdown of the political
ideologies. This output is then communicatedwith Flask application
module and sent to the Chrome extension for display.

3.1 Initialization module
The word embedding matrix used for the MLPmodel was initialized
using fastText, an unsupervised learning algorithm for obtaining
vector representations for words developed by Facebook‘s AI Re-
search (FAIR) lab [5]. The main difference between fastText and
other word embedding models (word2vec [19], GloVe [25]) is that
fastText treats each word as composed of character n grams, so
the vector for a word is also made of the sum of this character n
grams. Word2vec (and GloVe) treat words as the smallest unit to
train on [19] [25]. This means that fastText can generate better
word embeddings for rare words. Also fastText can generate word
embeddings for out of vocabulary word while word2vec and GloVe
can not do this.

This study employed the pre-trained word vector model with 1
million words on Wikipedia 20171. These vectors in dimension 300
were obtained using the skip-gram model described in the work
of Bojanowski et al. (2016) with default parameters[5]. Due to the
large size of this pre-trained model (4.3GB), Pickle, a built-in Python
module for serializing and de-serializing Python object structures2
was implemented. The output word embedding matrix was ’pickled’
to a .pkl file of 1.3GB in size.

Labeled sentences and phrases from the IBC were passed to a
Python function that outputs a sentence matrix representing these
sentences (or phrases). This sentence matrix was constructed as the
average of all word matrices instead of the sum. Some sentences
are longer than others and taking the average can normalize this
difference in while keeping the sentences‘ main ideologies.

3.2 Training module and classifier module
A multilayer perceptron (MLP) is a feed-forward neural network. It
has three or more layers and utilizes a nonlinear activation func-
tion (mainly hyperbolic tangent or logistic function) which could
classify data that is not linearly separable. Every node in a layer
connects (with a certain weight) to every node in the following
layer making the network fully connected. Learning occurs in the
perceptron by changing connection weights after each piece of data
1https://fasttext.cc/docs/en/english-vectors.html
2https://docs.python.org/3/library/pickle.html

3



is processed, based on the amount of error in the output compared
to the expected result. Learning in MLP is supervised learning, and
is carried out through back propagation, a generalization of the
least mean squares algorithm in the linear perceptron. MLP appli-
cations in Natural Language Processing include speech recognition
and machine translation [10].

In this project, the Multilayer Perceptron classifier takes matrix
representations of words and sentences and outputs the predicted
political ideology. The classifier was implemented with scikit-learn
library (version 0.19.1), an open source machine learning library
for Python (version 3.6.5) [24]. Scikit-learn is a Python module
integrating a wide range of state-of-the-art machine learning algo-
rithms for medium-scale supervised and unsupervised problems.
This library uses a general-purpose high-level language for ma-
chine learning [24]. Scikit-learn implementation of an MLP model
allows the following parameters[6]: hidden_layer_size, activation,
solver, alpha, batch_size, learning_rate, learning_rate_init, power_t,
max_iter , shuffle , random_state, tol, verbose, warm_start , momen-
tum, nesterovs_momentum , early_stopping , validation_fraction ,
beta_1 , beta_2 , epsilon, n_iter_no_change.

3.2.1 Training module. For the purpose of training, 75% of
the IBC (chosen randomly using scikit-learn‘s train_test_split()
function[6]) was employed. No dataset specific tuning was per-
formed. Training was done through stochastic gradient descent
over mini-batches[17]. The training module (classifierTrain.py) gets
the preprocessed sentence embedding matrix from the initializa-
tion module, and splits training and testing data. The module also
outputs testing results (precision, recall, F1 score)3 for analysis
and packages the resulting classifier (when the classifier meets the
experiment requirements) into a .pkl file for further use.

3.2.2 Classifier module. The classifier module (classifier.py) im-
ports the classifier file outputted by the training module along with
the word embedding matrix. The module contains a function that
takes a news article URL, extract its sentences through the arti-
cle extractor module, vectorizes these sentences and pass them
through the classifier. The classifier can then identify whether the
sentence ideology is neutral, conservative or liberal, and outputs a
percentage breakdown of the political ideologies.

3.3 Article extractor module
Python library Goose3 was employed for the task of scraping plain
texts of online news articles4. Goose3 is an open source library that
takes any news article or article-type URL and extracts not only
what is the main body of the article but also all meta data and most
probable image candidate.

For this study, the article extractor module was implemented to
extract only the main text of an article. The module uses the basic
syntaxes of Goose3 and consists of one function: it takes a news
article URL and outputs an array of sentences (in the article).

3Please refer to the experiment subsection for definitions
4https://github.com/goose3/goose3

3.4 Flask application module
To facilitate communication between the classifier and the Google
Chrome extension, a Flask application5 was employed. Flask is a
micro web framework in Python that allows developers to build a
web server with basic HTTP methods.

Communications between the Chrome extension and the MLP
classifier take place through a local Flask server using the
HTTP POST method. The server is launched at the beginning
of each session by calling the Flask application module (app.py)
from the command line. The server has a specific URL path
(https://localhost:5000/classify) that handles POST requests (con-
taining article URLs) from the Chrome extension and responds with
the classification results from the MLP classifier.

3.5 Google Chrome extension
A Google Chrome extension was developed and it is able to commu-
nicate with the classifier using the aforementioned Flask application
module. The extension queries the news article URL and passes it
to the Flask server, which in turn passes the address to the clas-
sifier module. The classifier acquires sentences from the article
text (through calling the article extractor module), performs word
vectorization and outputs political ideologies on a percentage ba-
sis. The extension then displays this percentage results of political
biases, indicating how many percentages of the article are liberal,
conservative, or neutral.

The Chrome extension uses the tabsAPI of ChromeAPI6 to query
the current active URL and triggers the extension whenever an user
navigates to a news site. It contains a connect() function which
sends the article URL as a JSON object to the Flask server, using
HTTP POST request. If the POST request is received and responded
successfully, the extension calls helper functions to displays the
results in its HTML pop-up window, as shown in Figure 3:

Figure 3: User interface of Chrome extension

5http://flask.pocoo.org/
6https://developer.chrome.com/extensions/devguide
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4 EXPERIMENTS AND RESULTS
4.1 Testbed and experiment design
The main dataset for this study is The Ideological Books Corpus
(IBC) [14], which consists of 4,062 sentences annotated for political
ideology at a sub-sentential level. Because the IBC contains labeled
data, it is divided into two sets, one used for training and one used
for testing, with ratio 3:1. That is, 25% of the IBC is the testing
datasets for the classifier.

Training result was evaluated based on three measurements:
precision, recall and F1 score (with F1 score being the main mea-
surement):

• Precision is the ratio of correctly predicted positive observa-
tions to the total predicted positive observations[21]. If the
classifier predicts 100 sentences are liberal (or conservative
or neutral) and 80 of them are actually liberal based on the
labeled data, then the precision is 80%.

• Recall is the ratio of correctly predicted positive observations
to the all observations in the actual class [21]. If there are
100 liberal sentences in the testing dataset and the classifier
successfully predict 70 of them, then the recall rate is 70%.

• F1 Score is the weighted average of Precision and Recall
(as shown in Equation 1 [21]). This score takes both false
positives and false negatives into account. Intuitively it is
not as easy to understand as accuracy, but F1 is usually more
useful than accuracy, especially if there is an uneven class
distribution, which is the case of the IBC dataset.

F1 =
2 × precision × recall

precision + recall
(1)

Experiments were carried out to find the optimal set of parame-
ters for the MLP classifier. The relevant parameters to be adjusted
are:

• hidden_layer_size: A tuple in which the ith element repre-
sents the number of neurons in the ith hidden layer.

• max_iter : Maximum number of iterations.
• batch_size: Size of mini-batches for stochastic optimizers.
• warm_start: When set to True, reuse the solution of the
previous call to fit as initialization, otherwise, just erase the
previous solution.

• early_stopping: When set to True, automatically set aside 10%
of training data as validation and terminate when validation
score is not improving.

Due to the nature of the classification problem, the rectifier acti-
vation function and Adam optimization algorithm (which works
better with large datasets) were kept constant[3].

4.2 Experiments and results
4.2.1 Classifier experiments. In the first set of experiment, the

classifier was trained using the default MLP parameters in scikit-
learn with four hidden layers, each contains 10 neurons, 200 max-
imum iterations, no mini-batch was employed and neither was
warm start nor early stopping. The measurements of this attempt
are shown in Table 2:

Table 2: Experiment results 1

Precision Recall F1 score # of sentences
Conservative 59% 53% 56% 1572

Liberal 64% 66% 65% 1925
Neutral 77% 81% 79% 2159
Average 68% 68% 68% 5656

The output of the first experiment also showed that themaximum
number of iterations (200) was reached but the optimization had
not yet converged. To solve this problem, parameter max_iter was
gradually increased. At max_iter = 1,000, optimization converged.
However, the F1 score results did not improve as compared to the
first experiment, and thus are not shown due to their triviality.

In the following experiment, the number of neurons in each layer
was doubled to 20 each. Maximum number of iterations was set
to 1,000, and batch_size, warm_start, early_stopping were kept the
same as the first experiment. The results are shown in Table 3:

Table 3: Experiment results 2

Precision Recall F1 score # of sentences
Conservative 67% 54% 60% 1539

Liberal 67% 73% 70% 1948
Neutral 81% 84% 82% 2169
Average 72% 72% 72% 5656

The new set of results improved slightly compared to that ob-
tained in the first experiment. However, several trials revealed that
performance measurements improved only with increases in the
size of the first hidden layer but not with subsequent hidden layers,
as shown in Figure 4:
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Figure 4: F1 scores relative to size of first hidden layer
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As a result, the optimal number of neurons in the first hidden
layer was set to be 500. Other parameters (batch_size, warm_start,
early_stopping) were also adjusted to speed up the training process.

According to Bengio, mini-batch gradient descent is the recom-
mended variant of gradient descent for most applications, especially
in deep learning [3]. A few advantages of using mini-batches are:
The model update frequency is higher than batch gradient descent
which allows for a more robust convergence, avoiding local min-
ima; the batched updates provide a computationally more efficient
process than stochastic gradient descent; batching allows both the
efficiency of not having all training data in memory and algorithm
implementations. The recommended mini-batch size is 32, which
shows to take advantage of the speedup of matrix-matrix products
over matrix-vector products.

Besides, parameter warm_start was set to true, which reuses
aspects of the model learned from the previous parameter value,
saving time. early_stopping was also set to true. This consists in
stopping an iterative optimization method before the convergence
of the training loss, to avoid over-fitting.

The training results of the new set of parameters (hid-
den_layer_sizes=(500, 20, 20, 20), max_iter=500, batch_size=32,
warm_start=True, early_stopping=True) are presented in Table 4:

Table 4: Experiment results 3

Precision Recall F1 score # of sentences
Conservative 77% 73% 75% 1502

Liberal 81% 79% 80% 1896
Neutral 84% 88% 86% 2258
Average 81% 81% 81% 5656

These results show that the MLP classifier has achieved an F1
score higher than that obtained by an RNN model on the same
dataset [21]. A summary of the significant experiments along with
the parameters used in each set of experiment are shown in Table
5:

Table 5: Experiments summary

Experiment 1 Experiment 2 Experiment 3
hidden_layer_size 10,10,10,10 20,20,20,20 500,20,20,20

max_iter 200 1000 1000
batch_size None None 32
warm_start False False True

early_stopping False False True
F1 score 68% 72% 81%

4.2.2 Chrome extension experiments. Based on the positive re-
sults obtained by the classifier, the Chrome extension was imple-
mented to classify real news articles. Experiments on 20 online
news articles did not yield promising results, however. Most arti-
cles were classified as 100% neutral, although many are taken from
conventionally opinionated news sites. Some were classified with

the opposite political ideology from what was expected, as shown
in Table 6:

Table 6: Online news articles classification

Article Liberal Neutral Conservative
Huffington Post article #1 0% 99.54% 0.46%
Huffington Post article #2 0% 100% 0%

Bloomberg article 0% 100% 0%
CNN article #1 0% 100% 0%
CNN article #2 0% 100% 0%

Fox News article #1 0% 100% 0%
Fox News article #2 0% 100% 0%
Breitbart article #1 5.41% 94.59% 0%
Breitbart article #2 0% 100% 0%

The Economist article 0% 100% 0%
NYTimes article 0.34% 99.66% 0%

Wall Street Journal article 0% 100% 0%
The Blaze article 0% 100% 0%
Slate article #1 0% 100% 0%
Slate article #2 0% 99.91% 0.09%
NPR article #1 0% 100% 0%
NPR article #2 0% 99.69% 0.31%
BBC article #1 0% 100% 0%
BBC article #2 0% 100% 0%
Medium article 0% 100% 0%

These unexpected outcomes can be attributed to several reasons.
First, news sites might be reporting with more structurally neu-
tral sentences (while the overall article can still be biased), which
neither a sentence-level nor word-level classifier could identify.
Second, the use of metaphors and negative phrases were not cap-
tured by the classifier. For example, a phrase such as "the following
statements are proved to be wrong" can revert the meaning of all
the statements behind it. Finally, the MLP classifier did not take
into consideration relations between different words and phrases,
which led to inaccurate classification results of online news.

5 CONCLUSION
This study has explored a different technical approach to the prob-
lem of political bias detection using Multilayer Perceptron model,
implemented by Python’s machine learning library scikit-learn. The
word embedding matrix for the MLP model is initialized with Face-
book’s fastText word vector representation model. The results of
the classification task show that, with a proper set of parameters,
the MLPmodel outperforms the recurrent neural network model on
the IBC dataset of 4062 labeled sentences. While the RNN achieve
an F1 score of 71.8%, the MLP model in this project was able to
attain an F1 score of 81%. However, real-time political news classifi-
cation (through Chrome extension) did not yield promising results.
Sentence-level classification of 20 articles from different opinion-
ated news sites yielded either “100% Neutral” results or results

6

https://www.huffingtonpost.com/entry/maria-butina-guilty-plea-conspiracy_us_5c0efd9ee4b06484c9fdbc0e
https://www.huffingtonpost.com/entry/kevin-mccarthy-trump-investigating_us_5c0ed1dce4b06484c9fda235
https://www.bloomberg.com/news/articles/2018-12-10/trump-weighs-meadows-lighthizer-in-search-for-chief-of-staff?srnd=premium
https://www.cnn.com/2018/12/10/politics/trump-impeachment-concern/index.html
https://www.cnn.com/2018/12/10/us/nypd-mother-child-video/index.html
https://www.foxnews.com/politics/what-does-mueller-have-memo-hints-at-damaging-russia-info-from-cohen
http://insider.foxnews.com/2018/12/10/democrats-push-prison-time-trump-brian-kilmeade-five-react
https://www.breitbart.com/the-media/2018/12/10/exclusive-paris-dennard-washington-posts-political-hit-job-cnn-blatant-bias/
https://www.breitbart.com/tech/2018/12/10/exclusive-senior-google-employees-target-breitbart-adsense/
https://www.economist.com/democracy-in-america/2018/12/07/donald-trump-nominates-a-new-attorney-general
https://www.nytimes.com/2018/12/10/climate/katowice-climate-talks-cop24.html?action=click&module=Top%20Stories&pgtype=Homepage
https://www.wsj.com/articles/white-house-digs-in-for-chief-of-staff-hunt-1544470734
https://www.theblaze.com/nick-cannon-blasts-liberal-comedians-for-their-blatant-hypocrisy-following-kevin-hart-controversy
https://slate.com/news-and-politics/2018/12/john-kelly-departure-cruelty-trump.html
https://slate.com/news-and-politics/2018/12/if-trump-fires-mueller-what-happens-grand-jury.html
https://www.npr.org/2018/12/10/675277354/dueling-u-s-agendas-as-u-n-climate-change-summit-enters-crucial-second-week
https://www.npr.org/2018/12/10/675169896/maria-butina-accused-of-being-russian-agent-reaches-plea-deal-with-feds
https://www.bbc.com/news/world-us-canada-46511026
https://www.bbc.com/news/world-us-canada-46513250
https://medium.com/personal-growth/why-boredom-is-powerful-but-being-bored-is-not-9f22e5daf4c


opposite from what was expected. Future works on this project can
explore several different directions. First, the MLP model can be
designed to classify sentences based on their semantic structures in
order to capture negation and metaphors. Second, the MLP model
can utilize larger labeled datasets for better training results. Finally,
other word embedding matrices (word2vec, GloVe, etc.) can be em-
ployed to provide different vector representations of words and
sentences.
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