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ABSTRACT
Heuristic search algorithms are a common technique seen in AI, es-
pecially for path-finding and automated planning. Such algorithms
often use an admissible heuristic to guarantee optimal solutions to
real-world problems, but memory and time limitations can render
this method unfeasible for a number of these problems. A useful
alternative is to let these algorithms use inadmissible heuristics
instead, resulting in sub-optimal yet practical solutions. This alter-
native poses the question of which heuristic would produce the
solution closest to being optimal while remaining practical for a
specific problem. This paper proposes an answer: Use multiple inad-
missible heuristics as features of a neural network. This combines
the strengths of the individual heuristics via the neural network
and results in a single heuristic . This procedure will be tested with
the 11-sliding tile puzzle problem, a variant of the more common
15-sliding tile puzzle problem seen in heuristic research.
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1 INTRODUCTION
An admissible heuristic is a function that never overestimates the
cost to move from a single problem state to the problem’s goal
state. When A* uses an admissible heuristic for a problem, it is
guaranteed to find the cheapest path to the goal, the problem’s
optimal solution. Searching for a problem’s optimal solution can
be extensive, depending on the complexity of the problem and the
number of possible states [7]. Such complex problems include real-
time pathfinding and pathfinding in large maps in commercial video
games.[2] These problems require a practical solution, and can be
solved with a sub-optimal search [3]. One method for A* to perform
a sub-optimal search is for A* to use an inadmissible heuristic. We
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Figure 1: A random solvable configuration (left), and a goal
configuration (right) of an 11-puzzle

believe that research into building stronger inadmissible heuristics
is beneficial for obtaining cheaper but still sub-optimal solutions.
This research topic we believe is less common as most studies for
building heuristics, especially for A*, focus on solving problems
optimally [10]. This paper proposes the use of a neural network,
that has been trained using multiple inadmissible heuristics, as part
of a new heuristic for the 11-sliding-tile puzzle problem. We seek to
introduce a new inadmissible neural network heuristic that, when
paired with A*, produces practical solutions that are more optimal
and require the same amount of resources as A* using the individual
inadmissible heuristics. These solutions should also have a greater
cost but require less resources than the optimal solutions obtained
by A* using an admissible heuristic.

2 BACKGROUND
2.1 11 Sliding-Tile Puzzle
The sliding puzzle is a classical problem for modelling algorithms
that use heuristics [8]. This makes it a suitable choice to experiment
with the neural network heuristic and observe its performance. The
11 Sliding Tile puzzle, or 11-puzzle is a 3 x 4 grid with 11 numbered
square tiles and one empty (blank) position. Any tile horizontally
or vertically adjacent to the blank can be moved into the blank’s
position. The goal is to shift all the tiles into an ordered goal con-
figuration from a randomized, solvable initial configuration.

2.2 A* Search Algorithm
The A* algorithm is a best-first heuristic search algorithm. A* starts
with a root node, which contains the initial state of the problem
that A* is trying to solve. A* then performs every possible action in
that initial state and the new problem states generated are stored
in child nodes. As an example,the root node shown in Figure 2 has
three possible actions ("Down", "Right" and "Left") in it’s state and
generates three child nodes from the result of those actions.

A*, if using an admissible heuristic, finds a guaranteed optimal
path to a specific goal node from the root node [6]. The goal node
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Figure 2: A* expanding nodes using heuristic costs

is any node containing a goal state for the problem, which is the
state with the tiles in the correct order for the sliding tile puzzle.
Each path to the goal node has a cost, with the optimal path being
the cheapest path. In order to continue a path, A* assigns as cost to
each child node of the current problem node and then expands the
child node with the lowest cost. The cost A* assigns is the result of
the formula, f(n) = g(n) + h(n). In this case, n is the child node, g(n)
is the cost of the path from the root node to this node and h(n) is
the value return by a heuristic for the node’s state. Using the Linear
Conflict heuristic and ignoring g(n) for all nodes for Figure 2 as
an example, A* picks the "Right" then "Down" nodes sequentially
because they have the lowest heuristic cost of their neighbors. This
example shows how A* chooses the next node to expand, but g(n)
is another cost that adds to the overall cost or f(n) of a node.

A* stores every node in one of two lists. The first list is the Open
List and contains every child node that A* has generates but has
not expanded yet. The second list, the Closed List contains every
node A* has already expanded. In Figure 2, A* stores the root node,
the first "Right" node, and the "Down" node in the Closed List, and
stores the remaining nodes in the Open List. A* picks the node
with lowest f(n) out of the Open List and expands it by generating
child nodes for every possible action in that node’s state. Since each
child node contains a reference to it’s parent node, this allows A* to
extend the current path or even different paths if the node with the
lowest cost expands from a earlier node in the current path. The
drawback of A* is its ability to expand an exponential number of
nodes, depending on the number of states for a problem. Using A*
for the more complex 24-sliding tile, for example, results in about
10 ˆ 25 possible nodes [9] which is not feasible for our paper due to
the memory and time costs.

2.3 NEURAL NETWORK
An artificial neural network, or neural network, is a machine learn-
ing model that learns to perform a task through training. This
training consists of giving the neural network examples of input
data along with the expected output or label. The neural network
also requires a way to measure the difference between the output
it predicts and the expected output. The neural network uses this
measure to assess its performance so it can update and improve
it’s accuracy. A neural network is part of a specific subset of ma-
chine learning known as deep learning. This means that the neural
network is made up of successive layers with each layer receiving
its input from the preceding layer and sends its output to the suc-
ceeding layer. It is the final layer that determines what the neural
network’s measure will be.

Neural networks can learn non-linear relationships between
the input and label data. They can also generalize and predict the
output of new input data after learning these relationships, making
neural networks useful for data grouping and classifying. The use
of a neural network in this paper means that there is no need to
create a specific formula or calculation to make an inadmissible
heuristic from the other heuristics, as the neural network learns
from example and these examples can differ depending on the
problem. However, the neural network must be carefully designed,
both the number of layers along with the individual layers, so that
it can predict the output with an acceptable degree of accuracy.

2.4 RELATEDWORK
Few studies have been done on inadmissible heuristics, but a num-
ber of studies have been done on neural networks.

Wilt, C., & Ruml, W., (2016) [10] examined how and why the
techniques for constructing heuristics for optimal search weren’t
effective for sub-optimal search. They used greedy best-first search
to prove establishedwisdom for creating heuristics for A* resulted in
poor results for a sub-optimal heuristic search algorithm. They used
the 11 sliding-tile puzzle over the 15 sliding-tile puzzle because their
available memory was not enough for a 15 sliding-tile puzzle. This
demonstrates the need to research new methods for sub-optimal
heuristic search as using established wisdom gives poor results.

Arfaee et al [1] implemented a bootstrapping procedure proposed
in another paper. They wished to validate the earlier paper by
adding the necessary details to make the procedure practical, then
they tested the procedure via experiments. Bootstrapping used a
weak heuristic, h0, and a heuristic search algorithm to solve a set
of problems within a time limit. The set of solved problems, along
with their solution lengths, were then fed into a neural network,
which outputted a new heuristic h1. Bootstrapping would use h1
to solve any remaining unsolved problems from the initial set and
continued the cycle of feeding input to the neural network and
building stronger heuristics. This methodwas proven to be a success
and shows that weak heuristics can be used to build a stronger one
via machine learning.

Jyh-Da Wei et al (2011) [4] proposed a method by which a neural
network could be trained to form an efficient heuristic function via
an adaptive heuristic search procedure. They used an inadmissible
heuristic and the A* search algorithm. Their procedure extracted
a vector of features from a node along with it’s heuristic value
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Figure 3: Solved puzzle(left) and two states with a linear con-
flict(right)

and fed them to the neural network as the input vector and label
respectively. The output of the neural network, called A(N), was
then used in a series of functions called the Adaptive Heuristic
Search to change the heuristic values of the A* search’s child nodes.
The nodes were then put into the Open list. Their results showed
that the solutions obtained by this method were close to the optimal
path and use of the method reduced the size of the Closed list. Thus
means the method reduced the number of resources needed while
returning cheaper sub-optimal solutions.

3 METHODOLOGY
3.1 Neural Network Architecture
We build our neural network from four successive layers. The first
layer is an Embedding layer; this layer accepts integer vectors of
a fixed size. After processing the input fed to it, the Embedding
layer sends the output to the next layer, the LSTM layer. The LSTM
layer recognizes patterns in sequences of input data; this layer also
has a form of memory as it uses the previous input it has received,
along with the current input to produce its output. The third layer
is a Dense layer which takes all the input data it receives from the
previous layer, processes it and sends the generated output from
each input to the next layer.

The last layer is a Dense SoftMax layer that returns a vector
of four probability scores whose sum is one. These scores each
represent the probability that the current input data maps to one
of the four output moves. Since our output is four exclusive moves
for a puzzle state, this layer is ideal for outputing the results of the
neural network. The measure used for our paper is the categorical
crossentropy loss function which finds the distance between the
probability scores produced by the neural network and the one in
the expected label for that specific input. The smaller the distance
the closer the neural network gets to outputting the expected output
or label.

Each layer is chosen as a result of experimentation with multiple
layers, with every layer tested to see how it affects the accuracy of
the current architecture made up of previous layers. The current
design for the neural network is the most effective one we produced
but can be further expanded on or redesigned in future work to
improve the accuracy further.

3.2 Heuristic Functions
By using the heuristics as the input of the neural network, the
neural network heuristic becomes a general use heuristic since a

problem can have it’s own set of heuristics to estimate costs. The
output of the neural network is an action from the set of possible
actions for the given problem.

As shown in Figure 2, it is possible for different puzzle states to
have the same heuristic cost. Using multiple heuristics per problem
state alleviates this problem as it differentiates these states. Different
costs will have different meanings depending on which heuristic
they came form. For example, a cost of two for the Misplaced Tile
heuristic means one tile is misplaced, but the Tiles Out of Rows and
Columns heuristic may output a cost of two for the same puzzle
state if the misplaced tile is either in in the wrong row or wrong
column or a cost of four, if the tile is in the wrong row and the
wrong column.

A sufficient number of heuristics needs to be chosen for the neu-
ral network’s input. This number can not be too large else the neural
network heuristic is impractical for problem solving compared to
using individual heuristics. For our preliminary experiment, three
inadmissible heuristics are the neural network’s input per 11-puzzle
state. These heuristics each estimate a cost to reach a specific goal
node from a current node and the cost values are grouped together
in an input vector for the neural network. The heuristics we use
for the input vector are as follows:

• Sequence Score - This heuristic function adds a sequence
cost to the Manhattan Distance. The Manhattan Distance is
the sum of the horizontal and vertical distances of each tile
from their goal positions and is also an admissible heuristic.
The Sequence cost adds an extra cost of two for each tile not
followed by its proper successor tile as well as a cost of one
if the blank is not in it’s goal position.
As an example is the sequence "1234". If numbered tiles of
"1" to "4" follow this sequence then there is no extra cost.
However, if the sequence of tiles is "1", "3","2" then "4" that
would result in a cost of 6 being added as shown in Figure 3.
This results in a inadmissible heuristic that gives more infor-
mation on the puzzle state than the admissible Manhattan
Distance alone.

• Misplaced Tiles - This heuristic is the total number of num-
bered tiles that are misplaced from their correct positions,
including the blank .

• Tiles Out Of Rows and Columns - This heuristic is the sum
of the number of tiles, including the blank, that are not in
their correct rows and the number of tiles not in their correct
columns.

The output of the neural network is a problem action, for the
11-puzzle, a move. This focus on moves instead of cost is to narrow
the possible outputs of the neural network and focus on improving
the accuracy of those predictions. Ideally, this move the neural
network predicts, for the current node, create the child node with
the lowest cost when compared to the other possible child nodes.
A*, with an admissible heuristic, can determine which child node
has the lowest cost and thus, which move is the expected output
per state. By using this method to generate the output move per
state, the neural network heuristic, when used by A*, is more likely
to produce near-optimal solutions. At the same time, the neural net-
work heuristic can’t guarantee admissibility therefore the heuristic
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Figure 4: Sequence Score adding extra cost

is still inadmissible. The admissible heuristic we use to generate
the moves for this paper is:

• Linear Conflict- This heuristic adds a cost of 2 to the Man-
hattan Distance for each pair of conflicting tiles in the board
configuration. Two tiles x and y are in a linear conflict if x
and y are in the same row , the goal positions of both tiles
are also in the row, x is to the right of y and goal position of
x is to the left of the goal position of y.

The Linear Conflict heuristic has been proven to be more efficient
than just using the Manhattan Distance as it explores less nodes to
find a optimal solution and is closer to the optimal cost.[5]. While
we chose the previous inadmissible heuristics for their ease of
implementation and availability, we chose Linear Conflict as the
admissible heuristic over Manhattan Distance, despite being more
complex to implement, because of its effectiveness.

4 EXPERIMENT DESIGN
The paper compares the results of A*, using the three inadmissible
heuristics, against our heuristic search algorithm that uses the neu-
ral network heuristic. These results are the length of the solutions if
any are found along with the size of the Open List and Closed lists.
The size of the lists provides an estimate of the resources needed
by the 2 algorithms.

4.1 Our Heuristic Search Algorithm
This algorithm takes a root node and stores the output costs of
the three inadmissible heuristics, for the node’s problem state, in a
vector for the neural network to receive as input.

The neural network outputs an array containing the probability
for the blank to move one tile Down from its original position in the
node’s problem state, move one tile Left from the original position,
moved one tile Up from the original position and move one tile
Right from the original position. Each move is represented by index
0, 1, 2 and 3 respectively and the sum of the probabilities is one. The
array output is [Down, Left, Up, Right]. An output of [0.12, 0.26,
0.20, 0.42 ], for example, states that the neural network predicts
moving the blank one tile right has the highest possibility to be the
output move, with Left being the second highest possibility. The
heuristic assigns a cost to the possible child nodes created from

Figure 5: The Neural Network heuristic

these moves. This cost is based on the probability score of the move
that generated the child node. The child nodes are then stored in
an Open List and the node with the lowest cost is taken out for
expansion and stored in the Closed List.

The cost assigned to a child node is based on the formula, a +
3(p-1). For this paper, ’a’ is the average of the three heuristic costs
that are in the input vector and weight for (p-1) is 3. These are
the preliminary values for ’a’ and the weight. Future work should
involve different calculations for ’a’, and the weight to determine
the optimal values. ’p’ represents themove for the child node having
the p highest probability in the neural network’s output array. For
example, using Figure 5, neural network takes an input vector of
[8, 11, 35] and outputs [0.20, 0.27, 0.17, 0.38]. Moving the blank one
tile right or Right has a probability of 0.38. Right has the 1st highest
probability so the formula is a + 0 or a. Left has the 2nd highest
probability so the formula is a + 3. Right has a cost of a + 6.

This formula is chosen because the neural network heuristic
should not assign a fixed cost based on the p highest probability
or else multiple nodes in the Open List will have the same cost.
The heuristic search algorithm should be able to expand nodes that
were stored in the Open List but were not previously chosen for
expansion. Using a fixed cost means that only the nodes whose
moves have the highest probability will be chosen for expansion
at any point. Depending on the heuristic’s performance, this may
be a method to be explored in future work but for this preliminary
experiment the heuristic will assign dynamic costs. As shown in
Figure 5, the formula of a + 3(p-1) allows ’a’ to change per problem
state. Initially a = 11 but for the next expansion a= 10 which we
rename from ’a’ to ’b’ to highlight the difference. Regardless of the
the cost of ’a’, the node with the highest probability will have the
lowest cost, with second highest having the second lowest cost and
so on. Thus, the neural network’s predictions are responsible for
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Figure 6: A chart of the flow between the parts of the pro-
gram

the paths that the heuristic algorithm takes, instead of the value
used for ’a’.

4.2 Experimentation
The first step of the experiment is to have a function generate ran-
dom initial puzzle states for the puzzle. These board states are all
solvable as the function creates them by starting with a solved puz-
zle and making a number of random moves. For this experiment we
will test with 5, 10 and 20 and 40 random moves, to see how scaling
up the puzzle’s complexity affects the neural network heuristic.

The second step is to train the neural network. The training
uses solvable puzzle states created from 45 random moves. The
maximum number of moves required to solve an 11 puzzle was
estimated by our calculations to be 45 so we picked it for the puzzle
states.

The third step is compare the A* and the new heuristic search
algorithm. We run A* using each of heuristics mentioned earlier
in the paper, (Sequence Score, Misplaced Tiles, Tiles out of Rows
and Columns, Linear Conflict), on the states stored in the file and
record the length of their solutions and the size of the two node
lists. We perform the same with the new algorithm.

The final step is evaluate the results and see how the new algo-
rithm’s solutions compares to A*’s. Ideally the size of the lists are
similar and the length of the solution is smaller to those obtained
from the inadmissible heuristics

5 EXPERIMENT RESULTS
The neural network this paper uses is able to achieve a 50% accu-
racy. On individual puzzle states, the neural network predicts the
expected move 50% of the time. The neural network was found to
be a less efficient heuristic when compared to the other heuristics,
outputting solutions with greater cost and requiring more resources
regardless of how complex the initial puzzle state is.

6 DISCUSSION
The neural network proved to be a less reliable heuristic than ex-
pected. With a accuracy of only 50%, the neural network, when
used as a heuristic, was observed to rarely tie with inadmissible

heuristics on simpler puzzles and be worse on more complex prob-
lems. The new heuristic search algorithm is still able to solve the
puzzles so we believe that improving the neural network’s accuracy
to at least 68-70/

7 FUTUREWORK
A neural network that uses the heuristics for its input and is a part
of an inadmissible heuristic is a concept that can be explored in a
variety of ways. Future work should try to increase the accuracy
of the neural network, either possibly by increasing the number of
inadmissible heuristics used in the neural network’s input, using
more distinct heuristics to distinguish between different states,
using a different neural network architecture or by other means.
Another method is to use different means to calculate the ’a’ value
used as the base cost for the neural network heuristic and the
weight used for the dynamic cost of the neural network heuristic.
A different possibility to use a problem domain that requires the
neural network to output a move from a different set of actions, or
have the neural network output a value that can be used directly
as a heuristic output instead of a move or action.

More research on inadmissible heuristics and ways to make
them more effective will let us explore an rarely-studied topic and
discover new ways to approach problems and solve them.
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