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ABSTRACT

Volume calculations and survey methods are needed to detect
changes in the flow of glaciers over time and to calculate the ca-
pacity of gullies. The current solutions are either labor-intensive,
expensive, or both. Such solutions make the research process slower
and costly. This paper provides an open solution called 3D-Quantify,
a framework for volumetric calculations using Structure from Mo-
tion (SfM). SfM is a cost-efficient way for reconstructing a 3D model
of an area by stitching 2D images. These 3D models can then be
scaled to extract features, including the volumetric measure and
capacity of the area. This project explores existing solutions, includ-
ing Cloud Compare and WebODM,, for the individual components,
focusing on the volume calculation algorithm for refinement. The
data from our approach is compared with volumetric data (i) mea-
sured using manual calculations and estimations, and (ii) calculated
using existing volumetric measurement software. We also com-
pare the cost of equipment, prior experience required to use the
workflow, and human time and input needed for the workflow to
function.
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1 INTRODUCTION

Surveying areas is a crucial part of Field Science research. Surveying
is an umbrella term that encompasses all geometrical and positional
measurement of objects/point. Doing so efficiently and accurately
matters, as it makes the analysis faster, cheaper and stronger. One
such method of surveying includes collecting images of the survey
site and identifying areas of interest within the site.

Surveys also serve as a way to calculate the capacity of a river
channel, map changes in a glacier, or soil erosion [9]. Such a survey,
in the past, has required Laser scanning techniques that map every
object in the field as a set of points with distance from a certain ele-
vation, creating a Point Cloud. Even though this method is efficient
and accurate, the cost of equipment acts as a barrier. Additionally,
such Laser-based systems require specific training and skills [9]
However, the Point Cloud of an area is a valuable resource, as it can
be used to generate accurate measurements and distances between
two points, or even find the coverage volume/capacity of the city.
Structure from Motion (SfM) provides a way to generate these Point
Clouds with the use of a basic camera. SfM provides an approximate
solution to the problem of surveying areas using images[16]. SfM is
a technique that generates three-dimensional models from a set of

images. It does so by recognizing features across images captured
from different angles and perspectives. This leads to the generation
of a Point Cloud, which as defined above, treats every object as a
set of points with distance from the camera. By transferring the
burden from data collection to data processing, we can make the
research more effective and efficient.

The existing method of generating volume from the Point Cloud
is by converting it into Triangulated Irregular Network (TIN) and
creating a triangular mesh. However, that approach does not work
on open objects and areas, including river channels and gullies.
This paper focuses on the problem of calculating the volume of
open objects.

We propose a solution called 3D-Quantify. 3D-Quantify is a frame-
work that takes images as inputs, converts them to a scaled Point
Cloud via SfM and the Scalar algorithm, and calculates the volume
from that Point Cloud by using the slicing method [17]. The slic-
ing method divides the Point Cloud into slices of uniform height,
projects those slices onto an x-y plane, and estimates the partial
volume of each slice by calculating its area in a projection plane.
It must, however, be noted that for the scope of this project, we
have implemented the slicing method of volume calculation, and
proposed an algorithm for scaling the Point Clouds. The implemen-
tation of scaling algorithm and consequently the development of
software that makes these moving parts work as a single framework
have been left for future work.

Our implementation of the volume calculation algorithm differs
from the slicing method proposed by Zhi et al. [17] in the way the
area covered by the polygon is estimated. Both the approaches rely
on the Shoelace algorithm for the area calculation, which requires
the points to be in counter-clockwise order. Our sorting strategy
(see section3) is similar to that suggested by Zhi et al. [17] but differs
in how we select our starting point, and our approach towards
dealing with multiple points with the same angle (see section 2).
So, the major contributions of this project are:

(1) Proposal for the 3D-Quantify as a framework.

(2) Design for the Scalar algorithm, and

(3) Design and Development of an algorithm for sorting 2D

points in a CCW order,

(4) Design and Implementation of the VolCalc algorithm,
It shall be noted that the implementation of the Scalar algorithm
and software that would connect the moving parts is out of the
scope of this project.
The rest of the paper is structured as follows. Section 2 covers the
background for the research, highlighting the areas and concepts
most relevant to this project. Section 3 talks about the workflow
and methodology, explaining the algorithms used and the reasoning



behind choices made. Section 4 outlines the testing and evaluation
scheme, while also displaying the achieved results. Section 5 lays the
future direction this research will move in, and section 6 concludes
this paper.

2 BACKGROUND

This section elaborates on the existing research in SfM, focusing
on its origins, existing methods used in the field to enhance data
collection, and current areas of application. It also highlights the
areas and concepts relevant to this study.

2.1 Structure from Motion

As highlighted in section 1, 3D-Quantify employs SfM as a first
step and solution for the generation of the Point Cloud. SfM was
developed by Westobi et al. as a low-cost, effective tool and method
for surveying [16]. They introduced it as an alternative to existing
expensive photogrammetric methods. Traditional methods used
the 3D location of the camera and the 3D location of known ground
control points. SfM, on the other hand, does not require the use
of camera locations and solves the 3D construction problem by
using feature matching algorithms. SfM workflow can be better
understood by dividing it into a 3 step process, namely (i) feature
extraction and matching, (ii) camera motion estimation, and (iii)
3D model recovery from estimated motion and features. All these
processes are applied to the set of 2D images [12].

Westobi et al. also introduced methods used to create high-resolution
digital elevation models (DEMs). They were able to show that verti-
cal accuracy can be achieved using SfM even for areas with complex
topography. As part of 3D-Quantify, SfM will take a set of images as
its input and will return a 3D Point Cloud of the area. Carrivick et
al. demonstrated that SfM could be applied in GeoSciences [4]. SfM,
with multi-view stereo, can be used to detect elevation, position,
and volumetric changes, by looking at multi-temporal data. They
also claimed that SfM could produce Point Clouds that are com-
parable in density and accuracy to those produced by laser scans.
Hence, by getting a similar density Point Cloud, with a reduction
in cost and manual labor through the use of SfM, we can make the
process more efficient without significant loss in accuracy.

2.2 The Shoelace Algorithm

After scaling the Point Cloud, we use the slicing method to calculate
the area and volume of each slice. A well-known algorithm for
calculating the area covered by a polygon is the Shoelace algorithm,
also known as The Surveyor’s Area Formula [3]. This formula takes
as input the list of coordinates of points in a 2D plane and returns
the area enclosed as its output. It does so by dividing the polygon
into triangles and calculating their areas. The image below shows
how the algorithm works in creating the area from the coordinates.
The shoelace algorithm does come with a limitation. It expects the
list of coordinates to be sorted in counter-clockwise (CCW) order.
Since the points we have are in random order, we have created an
algorithm to sort the points in the CCW order (see section 3.2).

2.3 Related Applications

Some major examples of SfM can be seen in the following areas:
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Figure 1: Shoelace algorithm[2]

o A cost-effective UAV based method to investigate calving
dynamics of a large outlet glacier draining the ice sheet of
Greenland [13].

o Creating a Digital Elevation Model (DEM) of a river environ-
ment using digital photographs [6].

e Collecting accurate 3D volumetric data in difficult to access
gully systems using SfM in place of LiDAR [9].

e Automate the accurate generation of georeferenced mosaics
from Unarmed Aerial Vehicle (UAV) imagery [15].

3 METHODOLOGY & WORKFLOW

This section focuses and elaborates on the design and implemen-
tation details of the workflow. Figure 2 shows the structure of the
workflow for 3D-Quantify. The following are the major components
that form the workflow:

a. SfM component will use images from the camera as its input
and convert them to a 3D structure. The output from this
component is a Point Cloud (PC). SfM component is primar-
ily based on pre-existing software, including WebODM [5]
(installed on Cluster servers) and Cloud Compare.

b. Scaler component uses the output PC from SfM as its input,
along with the Ground Control Point (GCP) locations to
produce a scaled Point Cloud.

c. VolCalc uses the scaled PC as its input and computes the
volume contained in the closed and scaled object. This algo-
rithm produces the final output regarding volume.

3.1 VolCalc algorithm

VolCalc algorithm is a key contribution of this project. This algo-
rithm can be divided into subparts, as can be seen in Figure 3. We
calculate the volume of the object by calculating the volume of each
horizontal slice of height h and summing the respective results.
Refer to Figure 4 and 5 for the Point Cloud slicing. The 3D slice is
projected onto the cartesian plane, such that, a point (xo, yo, zo) gets
projected to (xo, yo). The set of projected points in the 2D plane can
be treated as a polygon, which allows us to calculate the bounded
area by using the shoelace formula (see section 2.2). The calculated
area can then be multiplied by the height h to approximate the
volume covered by each slice. Hence, by decreasing the value of A,
we can get thinner slices, leading to closer approximations.
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Figure 2: Framework of volume calculation using SfM

As described earlier, the Shoelace formula comes with two major

constraints:

3.2

e Itrequires the points to be arranged in Clockwise or Counter-
Clockwise order. To solve this problem, we have developed
another algorithm that utilizes the polar coordinate system
as an intermediary. The sorting algorithm is explained in
section 3.2.

o Shoelace formula cannot be used in instances where the ob-
ject intersects itself, as can be seen in Figure 6. As of now, our
implementation of the algorithm does not solve this prob-
lem. In cases where we know of such intersecting objects,
we either divide the Point Cloud into two separate clouds or
increase the number of slices. Increasing the number of slices
leads to fewer points being projected to the Cartesian plane,
leading to lesser likelihood of a self-intersecting polynomial.

Sorting algorithm for Shoelace formula

As explained above, the Shoelace formula relies heavily on the
order of points. To sort these random points, we have developed
the following algorithm:

(1) The points are scanned to find the minimum and maximum

values on the x and y axes. Call these values xq, x1, Yo, y1.

By averaging these values, we find a midpoint, call it m; =
(x0+x1 Yoty )
2 2 /)

(2) All points are translated by my such that m; gets transformed

to the origin.

(3) The translated points are then converted to their polar forms

(r,0).

(4) The points are then sorted based on the 8, forming a counter-

clockwise order.

(5) These sorted points are then converted back to their cartesian

equivalents and translated back by mj, with origin going to
m1 and keeping the sorted order. This step allows us to get
the original points back in the sorted order.
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Figure 3: Flow Chart for VolCalc algorithm

It must be noted that, for the sake of simplicity, we are assuming
the polygon after translation in step (2) does not have multiple

points with the same value of 0.

3.3 Scalar algorithm

SfM transfers the load from hardware to the software side of au-
tomated data processing, reducing the reliance on the equipment



Figure 4: Stanford Bunny Point Cloud

Figure 5: Stanford Bunny Point Cloud with slices

with which the data is collected. The Point Clouds produced by
SfM need to be scaled to for accurate measurement of distances
between two points in the survey area. This scaling highly relies on
the availability of Absolute Ground Control Points, i.e., points with
known latitude, longitude, and elevation in the survey area. We
have proposed an algorithm for solving this problem with relative
Ground Control Points, i.e., points with known latitude and longi-
tude (which can be found via GPS), but with unknown elevation.
Our algorithm, which will be implemented in the future, provides a
way to use relative GCPs with accurate relative elevations for each
GCP to scale the Point Cloud. The process can be seen in Figure 7.
This algorithm requires the use of Pythagorean theorem in 3D to
calculate the distance between two points, and use that alongside
measured distance to find the elevation.

Figure 6: An example of polygon intersecting itself

4 RESULTS & EVALUATION

This section will highlight the test methodology, focusing on the
results achieved, and the effectiveness of our program. For the
experiments, we passed our Point Clouds through the system and
varied the parameters to see changes in output. The subsections
below will elaborate on the datasets used, explain the use of existing
software, and finally present the result gathered.

4.1 Datasets

It can be seen from the VolCalc algorithm design that the computa-
tion does not produce accurate results for objects that do not have
a single base, e.g., our algorithm would overestimate the volume
occupied by a horse by treating the projection of 4 legs as the sides
for a polygon. This means that only certain kinds of datasets could
be used for testing purposes to measure the accuracy of the system.
For this reason, we have used the following Point Clouds:

(1) Stanford Bunny, shown in figure 4.

(2) Sphere with a radius of 0.5 units. This will allow us to test
how our algorithm works with curved surfaces.

(3) Cube with a side of 1 unit.

(4) Vase.

These Point Clouds were available in Polygon file format (.ply files)
from the datasets compiled by Georgia Institute of Technology [11]
and Alexiou et al. [1].

4.2 Benchmarks

To evaluate the performance of our algorithm, we have used Cloud
Compare to find the volume of all the Point Clouds. This software
requires the Point Cloud to be converted to a mesh, which can then
be used to compute the volume. However, the values used here
must be treated as approximations. For the Point Cloud of a Sphere,
we can calculate the volume using the formula

4 3

V= gﬂ'r . (1)
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Figure 7: Flow Chart for Scalar algorithm

We got the following values for comparison:

(1) Volume for unit Cube: 1 cubic unit,
(2) Volume for the Sphere with a radius of 0.5 units: 0.5235987756
cubic unit.

4.3 Tests and Results

We evaluated the performance of VolCalc for above-mentioned
point clouds in terms of accuracy as well as execution time. We also
wanted to evaluate the impact of different tuning parameters on
the performance of our algorithm. It should be noted that one of
the natural conjectures that can be made regarding VolCalc is that
thinner slices lead to a more accurate volumetric measure. This is
because thinner slices will result in less overlap of the points, which
in turn will result in more accurate volume measurements. We can
control the thickness of a slice based on the number of slices being
used. Therefore, the height of each slice can be calculated as:

maximumZ — minimumZ
h= - . @)
number of slices

Since the point cloud is invariable in terms of z coordinates, we
varied the number of slices to manipulate the height of each slice.
First, we compare the performance of VolCalc with known volume
(i.e., the volume of a sphere). Fig. 8 and 9 show the accuracy of
VolCalc estimates with respect to the number of slices for cube and
sphere, while table 1 and 2 show the actual values calculated by
our algorithm. It can be observed from Fig. 9 that the accuracy for
sphere improves when the number of slices is increased from 10
to 50, but decreases when the number of slices is increased from
50 to 100. So, we can make a possible conjecture that there lies an
optimal number of slices here for every object.

Volume accuracy for Cube
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Volumetric measurement accuracy
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1 2 3

Experiment number

Figure 8: Bar graph displaying the Volume calculation accu-
racy for Cube

Table 1: Volumetric measure of cube

Experiment 1 2 3
Number of Slices 10 36 50
Volume 0.902733 | 0.972945 | 0.980506

The choice for the number of slices was based on the total number
of unique z coordinates of the points. In the case of the Sphere, for
example, we had 160 unique z coordinates for the points, making 160
our upper limit for the number of slices, if we do not want empty
slices. In the case where the slice has no points, our algorithm
returns zero volume, as would be expected.



Volume accuracy for Sphere
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Figure 9: Bar graph displaying the Volume calculation accu-
racy for Sphere

Table 2: Volumetric measure of sphere

Experiment 1 2 3
Number of Slices 10 50 100
Volume 0.490252 | 0.522469 | 0.451873

By testing against the known volumes of cube and sphere against
the values produced by Cloud Compare (see Table 5), we were
able to detect that Cloud Compare’s method of finding volume
using meshes was inaccurate in clouds like that of ours, which have
"holes" in them.

Tables 3 and 4 show the volumetric measurement derived by VolCalc
for the Stanford Bunny and Vase, respectively. As of now, we cannot
test the accuracy of our volumetric measure for the Stanford Bunny
and the Vase, since the values produced by Cloud Compare for the
sphere and the cube were inaccurate.

Table 3: Volumetric measure of Stanford Bunny

Experiment 1 2 3 4
Number of Slices 10 100 1000 2500
Volume 0.232144 | 0.220070 | 0.203281 | 0.169103

Table 4: Volumetric measure of Vase

Experiment 1 2 3 4
Number of Slices 10 100 1000 2500
Volume 0.228226 | 0.232800 | 0.214157 | 0.166578

To measure the cost-effectiveness of the module, we also measured
the time it took the program to compute the estimates. Table 6
displays the values gathered. All of these time values are provided
in seconds. It shall be noted that this was the real time it took for
the program to run. This time may vary on different machines with
different capabilities. Since Stanford Bunny is similar to Vase, and
Sphere is similar to Cube in the number of unique z coordinates

Table 5: Volumetric measure provided by Cloud Compare

Mesh created with | Cube Sphere | Bunny Vase

XY-plane 0.195088 | 0.132541 | 0.165937 | 0.0734697

best-fit plane 0.501907 | 0.132928 | 0.175176 | 0.0498891

Table 6: Time taken by VolCalc algorithm to generate Vol-
ume

Number of Slices
10 100 1000
Stanford Bunny 0.552s | 0.548s | 0.524s

Circle with Radius 0.5 unit | 1.499s | 1.362s -

Point Cloud

and number of slices used, we only calculated the time for Stanford
Bunny and the Sphere.

An interesting and counter-intuitive trend was the decrease in time
taken to compute volume with more number of slices. We will only
be able to say that with higher confidence in the future when we
have more experiments performed.

5 FUTURE WORK

One of the major future work includes implementing the Scalar
algorithm for the Point Clouds, to account for the inaccuracy in
the current height estimations. Further, I would like to develop
the software that connects all the pieces and makes 3D-Quantify
operate as one unit.

One major step in 3D-Quantify is 3D reconstruction using SfM,
which works poorly with highly reflective surfaces like snow. This
makes it hard to capture good quality images, and hence, might
reduce the effectiveness of the workflow in winter times.

6 CONCLUSIONS

In this paper, we proposed 3D-Quantify as an open source work-
flow for generating the volume of a survey area. As part of the
workflow, we have proposed Scalar and VolCalc algorithm. The
VolCalc algorithm has been implemented and tested against some
geometric objects of known volume. Since the underlying Shoelace
algorithm for area calculation produces the exact area covered by
a polygon, our VolCalc algorithm has generated results between
86% and 99% accuracy. The high accuracy of the VolCalc algorithm,
combined with the minimal time and training needed to use and
run the software helps us in making the process more efficient and
effective.
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