
Lip Reading using Neural Network and Deep learning
Karan Shrestha

Department of Computer Science
Earlham College

Richmond, Indiana 47374
kshres15@earlham.edu

ABSTRACT
Lip reading is a technique to understand words or speech by vi-
sual interpretation of face, mouth, and lip movement without the
involvement of audio. This task is difficult as people use different
dictions and various ways to articulate a speech. This project ver-
ifies the use of machine learning by applying deep learning and
neural networks to devise an automated lip-reading system. A sub-
set of the dataset was trained on two separate CNN architectures.
The trained lip reading models were evaluated based on their accu-
racy to predict words. The best performing model was implemented
in a web application for real-time word prediction.

KEYWORDS
lip reading, computer vision, deep learning, convolutional neural
network, web application, object detection

1 INTRODUCTION
Lip reading is a recent topic which has been a problematic concern
to even expert lip readers. There is a scope for lip reading to be
resolved using various methods of machine learning. Lip reading is
a skill with salient benefits. Enhancement in lip reading technology
increases the possibility to allow better speech recognition in noisy
or loud environments. A prominent benefit would be developments
in hearing aid systems for people with hearing disabilities. Similarly,
for security purposes, a lip reading system can be applied for speech
analysis to determine and predict information from the speaker
when the audio is corrupted or absent in the video.

With the variety of languages spoken around the world, the
difference in diction and relative articulation of words and phrases.
It becomes substantially challenging to create a computer program
that automatically and accurately reads the spoken words solely
based on the visual lip movement of the speaker. Even the expert
lip readers are only able to estimate about every second word [7].
Thus, utilizing the capabilities of neural networks and deep learning
algorithms two architectures were trained and evaluated. Based on
the evaluation, the better performing model was further customized
to enhanced accuracy. The model architecture with an overall better
accuracy was implemented in a web application to devise a real-
time lip-reading system.

2 BACKGROUND
This section provides the necessary background information to
understand this research project better. It identifies Haar Feature-
Based Cascade Classifier and Neural Network from the prominent
researches and explains the reason for usage in my project for
feature classification and training the lip reading model.

2.1 Haar Feature-Based Cascade Classifier
Paul Voila and Michael Jones introduced an efficient and robust
system for object detection using Haar Cascades classifiers [23]. The
Haar feature-based classifier is a machine learning based approach
which is trained with cascade function using a set of positive and
negative images. The Haar feature-based classifier is used to detect
objects in the images. In my project, I have used Haar feature-based
classifier to detect and track region of interest (ROI) - mouth region
from the input speaker videos to preprocess the data before training
the model with neural network architecture.

Initially, the algorithm required a set of positive images (frontal
face with mouth visible) and negative images (non-frontal face) to
train the classifier. Then, the specific feature (ROI) was extracted
from the image. A feature was obtained in a single value by subtract-
ing the sum of white pixels from the black pixels in the rectangle.
Haar classifier detects the particular features (ROI) in an image
based on three feature calculations - Edge features (Two rectan-
gles), Line features (Three rectangles) and Four-rectangle features.
The types of Haar cascade rectangle features are shown in Figure 1
[25].

Figure 1: Haar cascade rectangle features

Haar feature-based classifier has three main characteristics -
Integrated image, AdaBoost inspired learning algorithm and Atten-
tional Cascade method.

Integral Image is an image obtained by the cumulative addition of
pixels from the required region. The integral image at a location x,y
contains the sum of the pixels to left and above the x,y region [23].
When detecting an object (ROI) in images an Attentional Cascade
method is applied in each part of the image to provide an order
for evaluation and checking features. It prevents computing on
other features of the images. AdaBoost learning algorithm upgrades
the classification performance of a simple learning algorithm by
selecting a small set of features to train the classifier. Attentional
Cascade method with AdaBoost ensures for redundancy computing
to at a minimum level. Thus, these characteristics of Haar feature-
based classifier allow it for object detection with a higher precision
speed.



Wang et al. [24] proposed an approach for lip detection and track-
ing in real-time using a Haar-like feature classifier. Their method
combined the primitive Haar-Like feature and variance value to
construct a Variance based Haar-Like feature. This allowed the hu-
man face and lip to be represented with a small number of features.
A Support Vector Machine (SVM) was used for training and classifi-
cation, combined with the Kalman filter for real-time lip detection
and tracking of the lip movement. As mentioned in the paper, the
results of using Haar-like feature classifier was significantly better
than other machine learning approaches to detect lip movements.

To accurately detect and track the lip movement for preprocess-
ing the video data, I used Haar feature-based cascade classifier.
Similarly, Haar classifier benefited my project from its high com-
putation speed and precision in detecting and tracking of mouth
region (ROI) of speakers from video inputs of Lip Reading in the
Wild (LRW) dataset.

2.2 Neural Network
Neural Network (NN) is a computing system with roughly similar
properties as the nervous system in human brains. The neural
network is a framework of algorithms working together to identify
the underlying relations in a dataset to provide the results in the
best way possible. There are so-called hidden layers between input
and output layers which have their separate functionality combined
to perform specific tasks [8]. Specified by Hammerstrom, Neural
Network was used in the various tasks of computer systems like
image recognition, computer vision, character recognition, stock
market prediction, medical applications, and image compression
[6]. For my lip reading system, I use a specific type of deep learning
Neural Network called Convolutional Neural Network.

Convolutional Neural Network
Convolutional Neural Network (CNN) is a class of Neural Network
system in a standard multi-layered network. The layers comprise
of a single or more layer connected in a multiple connection series.
CNN is capable of utilizing the local-connectivity in high dimen-
sional data such as datasets composed of images and videos. This
feature permits the applicability of CNN in the field of computer
vision and speech recognition. [13].

A basic form of CNN has four significant parts: convolutional
layer, activation function, pooling layer, and fully connected layer.
Convolutional layer uses a set of learning filters to learn the param-
eters from the input data. The activation function is a non-linear
transformation function that defines the output of one node which
is then the input for the next layer of neurons. In the pooling layer,
the amount of parameters and computation in the network is re-
duced to control overfitting by decreasing the spatial size of the
network. Fully connected layer takes the input volume from the
convolutional layer or pooling layer to transform the result from
the feature learning part to output.

Chung and Zisserman [5] provide two novel contributions in
their paper. Firstly, Chung and Zisserman develop a pipeline of
the automated system to collect data of videos for lip reading from
TV broadcasts. Secondly, the paper uses a CNN architecture to
learn and train the model from the collected dataset. The use of
CNN in the model was to recognize individual words through the

sequences of lip movements. The paper also discusses different data
input techniques and the use of temporal fusion architectures to
analyze and compare the efficiency of the CNN implementation. In
this paper, 3D Convolution with Early Fusion (EF-3) architecture is
introduced which I incorporate in my project. Likewise, this paper
provides an analysis of the employment of the temporal sequences
using models like Hidden Markov Models and Recurrent Neural
Networks (RNN), which is less capable of adjusting with the motion
of the image. This lessens the predicted accuracy of the trained
models. However, the debate for using CNN is its applicability of
use in the moving subject with higher precision. The result of the
CNN model in their implementation showed a top-1 accuracy of
65.4%, which means the model accurately predicted the correct
label of the word 65.4 times.

Similarly, Li, Yiting, et al. [15], significant research has been
conducted for the dynamic feature extraction. Their research also
integrates the deep learning model. The primary extent of their
research was to use CNN to delimit the negative effects caused
by unstable subjects in the video and images, and face alignment
blurred during feature extraction. Their research provided a mod-
ification on the perspective for my project as their findings are
significant, in terms of accounting for shaking or unstable objects
in the dataset that I chose to train the model. A major constituent
in their project was the use of a novel dynamic feature calculated
using a collection of lip images and effectiveness of CNN architec-
ture for word recognition. Their results showed 71.76% accuracy
in recognizing words using a dynamic feature, which was 12.82%
higher than the result obtained through conventional static features
(composed through static images).

Noda et al. [17] applied CNN in their system of visual speech
recognition, using the visual feature extraction mechanism. The
CNN was trained by feeding the images of speakerâĂŹs mouth
area combined with phoneme labels. A phoneme is a distinct unit
of sound that collectively distinguishes a word in a language. The
model acquired multiple convolutional filters extracting essential
visual features that recognized phonemes. Further, their model ac-
counted for temporal dependencies for the phonemes generated by
label sequences which were handled by a hidden Markov model
that recognized multiple isolated words. Their proposed system
implemented CNN and a hiddenMarkovmodel for visual feature ex-
traction, which significantly outperformed the models that acquired
"conventional dimensionality compression approaches." The re-
sults demonstrated 58% recognition accuracy of phenomes achieved
through image sequences of raw mouth area [17].

Hong et al. [10] proposed a novel network structure capable of
reducing the computation cost and improving the accuracy for prac-
tical usage. This paper introduced lightweight deep neural network
architecture which minimized the redundancy by adopting innova-
tions like C.ReLU [20] and Inception structure [22]. I utilized their
proposed lightweight model architecture as it achieved a reliable
result compared to the current state-of-art in object detection.

From these existing research work, the use of deep learning
CNN model showed a significant result and improvement in the
automatic speech recognition. Thus, I integrated the CNN model
in my project.

2



3 DATASET
This section describes the Oxford-BBC Lip Reading in the Wild
(LRW) dataset [5] used for training and evaluation of the deep
learning model in this project. LRW dataset is a large publicly
available (upon request) dataset for non-commercial and academic
researches. The dataset consists of short video clip segments of
1.16 seconds (approximately 29 frames). It comprises of hundreds of
speakers videos from BBC programs, primarily from talk shows and
news. Each video segment is clipped to record only the part where
the speaker utters the word. Metadata is provided in the dataset to
determine the start and end frames for each word duration in the
video. A large volume of speakers complemented with variation
in head poses, viewpoints (frontal to profile) and variant lighting
conditions sets the dataset to be challenging and requires to be
preprocessed to fit the training model.

This dataset contains 500 different word instances with up to
1000 utterances for each word spoken by different speakers. This
dataset was generated using a multistage pipeline for a specific
purpose of audio-visual speech recognition as described in [2].
The processing pipeline initially involved in video preparation
by extracting the facial landmark using a linear Support Vector
Machine (SVM) classifier, followed by audio and text preparation
to force-align the subtitles to get a time-stamp of spoken word
from each video. The unaligned audio and video streams were
synchronized using Penn Phonetics Lab Forced Aligner [9, 27] due
to the significant performance benefits over speech recognition
methods.

The dataset was compiled into a training set, validation, set and
test set based on broadcast dates of videos corresponding individual
videos to one of the three sets. The training set consists of 500 words
with more than 800 utterances of each word. Similarly, in both the
validation set and test set, there is at least 40 video occurrence of
each word.

Due to the limited computational resource and considerable easy
usage of the web application, I only trained a part of the LRW
dataset. Training the whole dataset within my computer architec-
ture would take several days or weeks. I selected 19 words from
the LRW dataset to train the lip reading model. The selected words
have a noticeable difference in articulation and lip movement. I ne-
glected the shorter words to include in the training dataset because
of ambiguities produced by homophenes (for example, ’cell’ and
’sell’ have similar lip movement). The selected words from the LRW
dataset are listed below:

ABOUT, ACCESS, ALLOW, BANKS, BLACK, CALLED,
CONCERNS, CRISIS, DEGREES, DIFFERENT, DOING,
EDITOR, ELECTION, EVERY, FOCUS, GROUP, HUMAN,
IMPACT, JUSTICE

4 DATA PRE-PROCESSING
In the pre-processing stage, the speaker videos from LRW was
initially used to detect the mouth - Region of Interest (ROI). An
OpenCV python framework with Haar Feature-Based Cascade clas-
sifier was used to detect face and mouth region from each input
videos. OpenCV is an open-source multi-platform library of pro-
gramming functions focused on computer vision [2]. It provides

many useful functions like video and camera input streams, object
tracking, drawing tools, image cropping, and algorithm implemen-
tation of Haar Feature-Based Cascade classifier.

Solely focusing on the mouth area paced up the training process.
Frontal and profile face Haar classifier detected face within each
video frame, then, a mouth classier detected the mouth region. As
seen in the first frame of Figure 2 the frontal face of the speaker is
defined with a blue rectangle and the mouth region is recognized
with a red rectangle. More information on feature detection with
Haar Feature-Based Cascade classifier is provided in section 2.1.

Figure 2: Haar classifier detecting face and mouth, Median-
Flow tracker tracking the mouth region

Median Flow tracker was initialized on the detected mouth area
with slightly enlarged tracking area for better and more features to
track. It prevented cropping parts of the mouth when the speaker
moved in the video. It is an OpenCV tracking API (Application
Programming Interface) that tracks objects in both backward and
forward directions in time and measures the discrepancies between
the two trajectories. This tracker enables to detect selected tra-
jectories in the video and allows for tracking failures [16]. There
are multiple tracking algorithms provided in the OpenCV library.
From comparison and description provided in [16], I found about
two robust algorithms for lip tracking - Median Flow Tracker and
Kernelized Correlation Factor (KCF). However, using KCF and test
processing on 200 sample videos ended up losing tracker in 83
samples running at an average speed of 115 ms/sample. Similarly,
with the Median Flow tracker, the test processing concluded losing
tracker on 67 videos running at an average rate of 84 ms/sample.
Thus, I proceeded with Median Flow tracker due to relatively higher
average processing speed. In Figure 3, the tracker was initialized
from the second frame in the ROI with an enlarged tracking area,.
It is shown by outlined with a yellow rectangle.

Figure 3: Lip Detection Process

3



Pre-processed Data Storage. The pre-processed data was stored to
save time and not repeat the whole process. The frames of the
tracked mouth region were cropped and converted to a grayscale
image. Each frame was resized to a dimension of 24 x 32 pixels. A
tensor with 28 frames produced size of 28 x 24 x 32 (depth x height x
width). The tensor was converted and saved in a 3-dimensional(3D)
NumPy array.

5 TRAINING
The lip reading model was trained with a CNN architecture. A
3-Dimensional (3D) CNN was applied to train the pre-processed
lip samples and compare various parameters. Due to the 3D CNN
architecture’s capability of training with high dimensional data like
image sequences. The saved pre-processed image data from training
set could be loaded in 3D CNN to train the model. Two separate 3D
CNNmodel architectures (EF-3 architecture and Lightweight Model
architecture) as mentioned in Section 2.2, was initially trained for
evaluation using the pre-processed data from the LRW dataset.

Both the architectures were implemented using Keras [4], an
open-source neural network library written in Python. Keras com-
bines high-performance computational functions with a relatively
simple implementation of neural networks. Similarly, I used the
Keras library to run on top of TensorFlow framework. TensorFlow
is a python-friendly open-source framework providing numerical
computation and dataflow programming for deep learning [1]. It
allows for deployment of computation across multiple platforms -
Graphics Processing Unit (GPU), Central Processing Unit (CPU) and
Tensor Processing Unit (TPU). Keras with the TensorFlow backend
was used to build the CNN models [4].

I constructed the EF-3 architecture based on VGG-M model as
suggested by Chung et al. in ’Lip Reading in The Wild’ [5]. Table
5.1 highlights the details of the parameters and various layers of
EF-3 architecture.

Layer (type) Output Shape Param
conv3d (None, 28, 24, 32, 48) 1344
max pooling3d (None, 9, 8, 10, 48) 0
conv3d (None, 9, 8, 10, 256) 332032
max pooling3d (None, 3, 2, 3, 256) 0
conv3d (None, 3, 2, 3, 512) 3539456
conv3d (None, 3, 2, 3, 512) 7078400
flatten (None, 9216) 0
dense (None, 19) 175123
Total params: 11,126,355
Trainable params: 11,126,355
Non-trainable params: 0

Table 1: EF-3 architecture

Initially, the input layer reads the images then, the convolutional
layer (conv3d) learns the parameters. The term "parameter" refers to
the learnable elements like weight matrices in a layer. The trained
parameters from each convolutional layer are calculated using:
((kernel size x stride + 1) x filters, 1 is added to account for the bias
term for each filter. As seen in table 1, in the first convolutional
layer, the total trained parameters are ((3 x 3 x 3) x 1 + 1) x 48 = 6048.

Since, the first convolutional layer has already learned 48 filters, the
trainable parameters in the second convolutional layer are ((5 x 5 x
5) x 48 + 1) x 256 = 1536256 and so on. Supervised learning in CNN
takes place as the parameters were trained and passed through each
of the four convolutional layers. Total parameters learned during
the training using this model architecture were 50,870,451.

To tune the hyperparameter, the number of epochs was set to
30, Adam optimizer algorithm [12] was used with the learning rate
set to 0.0001, to speed up the training process. Training the model
in EF-3 architecture ended after 16 epochs with a resulting test
accuracy of 70.92%. The validation accuracy did not improve after
12 epochs providing a validation accuracy of 73.34%.

Similarly, I also experimented with a customized Lightweight
model architecture /citehong2016pvanet to train the lip reading
model using the pre-processed data. Using the lightweight model
architecture the lip reading model trained significantly faster com-
pared to the EF-3 architecture due to about 16 times less trainable
parameters while maintaining the test accuracy at 66.56%. The de-
tails on the various layers and parameters are provided in Table
2. The structure of the lightweight model architecture is shown in
Figure 4.

Layer (type) Output Shape Param
conv3d (None, 28, 24, 32, 64) 1792
max pooling3d (None, 9, 8, 10, 128) 0
conv3d (None, 28, 24, 32, 128) 221312
conv3d (None, 9, 8, 10, 128) 442496
max pooling3d (None, 3, 2, 3, 128) 0
flatten (None, 1152) 0
dense (None, 19) 43759
Total params: 709,395
Trainable params: 709,395
Non-trainable params: 0
Table 2: Model A1: Lightweight Model architecture

Figure 4: Lightweight model architecture

The total trainable parameters in the Model A1 were 709,395. In
the first convolutional layer, 64 convolutional kernel filters of size
(3x3x3) were used on input images which trained 1792 parameters.
Kernel filters were set to 128 on other convolutional layers and max-
pooling layers. Lesser kernel filter made a smaller convolutional
layer which reduced the number of parameters in the network and

4



provided for regularization. As the Lightweight model architecture
(Model A1) showcased a well-performing result with faster training
neural networks, thus, I used this model as the base architecture
for training the lip reading model to assigned the trained model
weights in the web application.

In the base architecture (referred to as Model D) I added batch
normalization layers to normalize each input channel across a mini-
batch. Additionally, I also included dropout regularization [26] to
prevent CNN to overfit the training data. The evaluation of the
batch normalization and dropout regularization method is provided
in section 6. The number of kernel filters used was the same as in the
Model A1, but the kernel size was increased to (5x5x5). The trained
parameters in Model D was only slightly higher than in Model
A1. Training the pre-processed data with Model D provided a test
accuracy of 77.14% and validation accuracy of 80.27%. Information
on architecture differentiation, parameters, and various layers is
shown in table 3.

Layer (type) Output Shape Param
conv3d (None, 28, 24, 32, 64) 8064
batch normalization (None, 28, 24, 32, 64) 256
max pooling3d (None, 9, 8, 10, 64) 0
dropout (None, 9, 8, 10, 64) 0
conv3d (None, 9, 8, 10, 128) 1024128
conv3d (None, 9, 8, 10, 128) 2048128
batch normalization (None, 9, 8, 10, 128) 512
max pooling3d (None, 3, 2, 3, 128) 0
flatten (None, 2304) 0
dense (None, 2304) 43759
Total params: 3,124,883
Trainable params: 3,124,499
Non-trainable params: 384

Table 3: Model D: Lightweight architecture model with
Batch Normalization and Dropout

6 EVALUATION
In the field of machine learning, evaluation of the model is a signif-
icant task. It is important to know if the trained model has learned
patterns to generalize the prediction in unseen data to avoid overfit-
ting on the lip readingmodel. For measuring the predictive accuracy
of the model I performed a Top-1 accuracy, [14] on the test set of
LRW dataset, so the word with the highest probability is the ex-
pected answer.

The evaluation of training each model is listed in Table 1; the
testing accuracy was measured on a test set containing 877 samples
of pre-processed data.

Kernel Size
In Model A2, I enlarged the kernel size in 3D convolutional lay-
ers to (5x5x5), comparing this to results of Model A1 with kernel
size (3x3x3). The increased the kernel size considerably improved
the validation accuracy from 66.56% to 70.29%. The comparison of
Kernel sizes between Model A1 and A2 is provided in the Figure 5.

Model Test Accuracy Kernel Size Epochs Speed
EF-3 70.92% 3x3x3 16 190 ms
A1 66.56% 3x3x3 14 104 ms
A2 70.29% 5x5x5 14 110 ms
B 71.25% 5x5x5 17 115 ms
C 74.37% 5x5x5 12 120 ms
D 77.14% 5x5x5 25 117 ms

Table 4: Evaluation of model architectures

Figure 5: Comparison of Kernel Size between Model A1 and
A2

Batch Normalization
Batch normalization is a method to normalize the internal repre-
sentation of data to improve speed, performance and stability of
the training in neural networks [19]. A few advantages of using
batch normalization were stochastic optimization in training neural
networks, regularized the model, mini-batches were jointly normal-
ized, and parameters were learned per feature map, and an internal
covariant shift is reduced [11]. Internal covariant shift is the co-
variant shift occurring within the neural network as the network
learns and updates the weights with distribution of training output
passing from one layer to another. The distribution of output takes
more time in the higher layers which slows down the learning
process. Thus, a reduction in the internal covariant shift along with
a higher learning rate speeds up the learning.

Normalization was performed for each mini-batch before feeding
the data into each neural network. A batch size of 16 was set for
each mini-batch. Data was converted from the Numpy array of
values between 0 and 255 to type float16 between the range -1
and 1. Model A2 does not include batch normalization, whereas
Model B (built on top of Model A2) has a batch normalization
layer. The comparison between the two models shows around 1%
improvement in validation accuracy du toe to batch normalization.
There is only a slight increase in accuracy as a subset of the LRW
dataset is used to train the models. However, a significant impact
can be measured using the whole LRW dataset. Table 5 compares
the accuracy of the two models.

Dropout
Dropout is a regularization technique which helps to reduce overfit-
ting and improve the generalization of neural networks. I included

5



Model Val. Accuracy Kernel Size Batch Normalization
A2 70.29% 5x5x5 No
B 71.25% 5x5x5 Yes

Table 5: Evaluation of Batch Normalization with Model A2
and Model B

dropout regularization in my training model considering the sug-
gestion provided by Srivastava et al. [21].

Model C and Model D were trained with dropout regularization.
As seen in Table 6, in Model C with a dropout rate of 30%, the
validation accuracy improved by more than 4% compared to Model
B (without dropout). Similarly, using even a higher dropout rate of
40% in Model D, the validation accuracy increased by around 3%. In
both of theModels C and D, the validation accuracy was higher than
the testing accuracy which shows the overfitting got successfully
prevented. Thus, dropout regularization helped in improving the
overall model accuracy.

Model Val. Accuracy Test Accuracy Dropout rate
C 74.37% 69.17% 30%
D 77.14% 70.35% 40%

Table 6: Evaluation of Dropout with Model C and Model D

Confusion Matrix
I generated a confusion matrix for the model with the best accu-
racy - Model D. The confusion matrix plot of the trained words
is shown in Figure 5. A confusion matrix is a tool to summarize
the performance of a classification algorithm. I implemented the
confusion matrix using sci-kit-learn machine learning library [18].
Confusion matrix provided a robust evaluation of the trained model.
The model was evaluated based on the classes that model predicts
incorrectly comparing it the words that are being confused. The
percentage number in each cell represents how much a particular
word is being confused with another word. A higher confusion rate
is shown with a darker background.

7 WEBSITE APPLICATION
A website (web) application was built to demonstrate the perfor-
mance of the trainedmodel. It allowed the user to view the predicted
results of the lip articulated words.Web camera took the video input
of the speaker similarly as when preprocessing the training data.
Head and mouth were detected and tracked on each frame; then,
the cropped area of lips was held in an array. A specific number
of frames were counted from the array then passed to the model
for prediction. The results were plotted in a bar plot to show the
prediction of the words.

Web application allowed the model to run on the client side,
thus utilizing the user’s graphic card. This was beneficial as there
was an improvement in speed for predicting the words, user’s data
was protected, and the server load got minimized. The user and
server had to exchange the data only when the website was ac-
cessed. The model architecture and the trained weights would be

Figure 6: Confusion Matrix of Trained Words

downloaded on the client side and run in the user’s architecture.
Figure 6 provides an illustration of this process.

Figure 7: Design of Web Application

I choose Keras.js [3] library to deploy the model in the web ap-
plication as the model was trained in Keras library. Keras.js used
a custom protocol buffer format binary file which was easily con-
verted from the original weight files. Similarly, I used clmtrackr.js
[cite] to track the face from the web camera video input, and the
face coordinates were mapped as closely as possible. The resulting
tracked array of lip frames were normalized, and the resulting vec-
tor was fed into the model for word prediction. After the model
completed prediction, an output vector probability of each word
was displayed in a bar plot for user review. I used Chart.js [cite] to
construct the chart for a bar plot and display the prediction results.
The front-end of the web application is shown in Figure 7.

6



Figure 8: Front-end of Web Application

8 CONCLUSION AND FUTUREWORK
This project has explored various tools and technologies like Object
detection using Haar Feature-Based Cascade classifier, Convolu-
tional Neural Network, Keras neural network library and Keras
JavaScript library to built a web application for an automated real-
time lip reading. Similarly, the result of training the dataset in
Lightweight model architecture outperformed the EF-3 architec-
ture. Model A1, A2, B, C and D was built on top of the lightweight
model architecture which was evaluated customizing and improv-
ing each model. From the trained architectures, Model D had the
highest accuracy and best performing solution. Thus, this model
was implemented to associate the model weights in the web appli-
cation.

For future work, the whole LRW dataset can be trained to test
for the more robust lip-reading system. Similarly, the lightweight
model architecture can be trained in higher computer architecture
or utilizing parallel computation. Likewise, the model can be trained
for higher accuracy with the possibility to lip read sentences.

ACKNOWLEDGEMENT
I heartily appreciate the Department of Computer Science at Earl-
ham College for the opportunity to work on this project. A genuine
thanks to Dr. David Barbella for his guidance, encouragement, co-
operation and flexible meeting times throughout the process. I am
also obliged to Dr. Xunfei Jiang for her invaluable mentoring and
constructive feedback through out the process.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265–
283.

[2] Gary Bradski and Adrian Kaehler. 2008. Learning OpenCV: Computer vision with
the OpenCV library. " O’Reilly Media, Inc.".

[3] L. Chen. 2016. keras,js. https://github.com/transcranial/keras-js
[4] François Chollet. 2015. Keras documentation. keras. io (2015).

[5] Joon Son Chung and Andrew Zisserman. 2016. Lip reading in the wild. In Asian
Conference on Computer Vision. Springer, 87–103.

[6] Dan Hammerstrom. 1993. Neural networks at work. IEEE spectrum 30, 6 (1993),
26–32.

[7] Ahmad BA Hassanat. 2011. Visual Speech Recognition, Speech and Language
Technologies, Prof. Ivo Ipsic (Ed.), ISBN: 978-953-307-322-4, InTech.

[8] Simon Haykin. 1994. Neural networks: a comprehensive foundation. Prentice Hall
PTR.

[9] Hynek Hermansky. 1990. Perceptual linear predictive (PLP) analysis of speech.
the Journal of the Acoustical Society of America 87, 4 (1990), 1738–1752.

[10] Sanghoon Hong, Byungseok Roh, Kye-Hyeon Kim, Yeongjae Cheon, and Minje
Park. 2016. Pvanet: Lightweight deep neural networks for real-time object
detection. arXiv preprint arXiv:1611.08588 (2016).

[11] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[12] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In Proceedings of the 25th
International Conference on Neural Information Processing Systems - Volume 1
(NIPS’12). Curran Associates Inc., USA, 1097–1105. http://dl.acm.org/citation.
cfm?id=2999134.2999257

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[15] Yiting Li, Yuki Takashima, Tetsuya Takiguchi, and Yasuo Ariki. 2016. Lip reading
using a dynamic feature of lip images and convolutional neural networks. In 2016
IEEE/ACIS 15th International Conference on Computer and Information Science
(ICIS). IEEE, 1–6.

[16] Satya Mallick. 2017. Home. https://www.learnopencv.com/
object-tracking-using-opencv-cpp-python/

[17] Kuniaki Noda, Yuki Yamaguchi, Kazuhiro Nakadai, Hiroshi G Okuno, and Tetsuya
Ogata. 2014. Lipreading using convolutional neural network. In Fifteenth Annual
Conference of the International Speech Communication Association.

[18] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. Journal
of machine learning research 12, Oct (2011), 2825–2830.

[19] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. 2018.
How does batch normalization help optimization?. In Advances in Neural Infor-
mation Processing Systems. 2483–2493.

[20] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. 2016. Under-
standing and improving convolutional neural networks via concatenated rectified
linear units. In international conference on machine learning. 2217–2225.

[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[23] Paul Viola, Michael Jones, et al. 2001. Rapid object detection using a boosted
cascade of simple features. CVPR (1) 1 (2001), 511–518.

[24] Lirong Wang, Xiaoli Wang, and Jing Xu. 2010. Lip detection and tracking using
variance based haar-like features and kalman filter. In 2010 Fifth International
Conference on Frontier of Computer Science and Technology. IEEE, 608–612.

[25] Phillip Ian Wilson and John Fernandez. 2006. Facial feature detection using Haar
classifiers. Journal of Computing Sciences in Colleges 21, 4 (2006), 127–133.

[26] Haibing Wu and Xiaodong Gu. 2015. Towards dropout training for convolutional
neural networks. Neural Networks 71 (2015), 1–10.

[27] Jiahong Yuan and Mark Liberman. 2008. Speaker identification on the SCOTUS
corpus. Journal of the Acoustical Society of America 123, 5 (2008), 3878.

7

https://github.com/ transcranial/keras-js
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/
https://www.learnopencv.com/object-tracking-using-opencv-cpp-python/

	Abstract
	1 Introduction
	2 Background
	2.1 Haar Feature-Based Cascade Classifier
	2.2 Neural Network

	3 DATASET
	4 Data Pre-Processing
	5 Training
	6 Evaluation
	7 Website Application
	8 Conclusion and Future Work
	References

