
Testing the Efficiency of the Elo ranking algorithm and Reddits
Hot Rank algorithm

Priscilla Coronado
pcoron15@earlham.edu

Earlham College
Richmond, Indiana

ABSTRACT
This research looks at the efficiency of two ranking algorithms,
the Elo algorithm and Hot Rank algorithm. With a database of a
thousand recipe inputs, each recipe will receive a random number
of points, or "upvotes," for the two algorithms to create their quality
numbers in order to sort the list.This simulates a real user base.
Both are ranking algorithms, but have different equations to deter-
mine which input ranks higher than the other. Therefore, the final
ordering may not be identical. Each algorithm will be timed as they
sort all of the one thousand inputs by comparing two inputs at a
time. The experiment shows that the Elo algorithm is substantially
faster than the Hot Rank algorithm.

CCS CONCEPTS
• Algorithms Reddit; Hot Rank algorithm; Elo algorithm;
Databases;

KEYWORDS
Datasets, Databases, Algorithms, Reddit Hot Rank, Elo algorithm
ACM Reference Format:
Priscilla Coronado. 2018. Testing the Efficiency of the Elo ranking algorithm
and Reddits Hot Rank algorithm. In Woodstock ’18: ACM Symposium on
Neural Gaze Detection, June 03–05, 2018, Woodstock, NY. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Algorithms are the foundation of any program; they are the step-
by-step process for developers to create the programs that modern
society uses. Efficiency is key in building an algorithm, especially
when it will be used by millions. People of today expect fast results
and an application that takes too much time doing its processes
will deter potential consumers.
Hot Rank is one algorithm that fall within the expectation of deliv-
ering fast results. It is an algorithm that is used by the 18th most
popular website, Reddit. Reddit, being a forum based website, re-
quires the Hot Rank algorithm to determine which user made post
is more popular than other posts. The algorithm determines this by
taking into account when the post was posted, what is the current

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

date, the number of upvotes, and the number of downvotes of the
post. These ideas are discussed further in section 2.2.
The Elo algorithm is an algorithm that normally does not fall into
the expectation of delivering fast results. Originally it was created
as a means to rank different chess players based on their wins and
losses. This is discussed further in section 2.1.
For the purpose of this experiment, the two algorithms have been
modified in order to sort a list and to simulate how the algorithms
function in a realistic state. In other words, the algorithms are im-
plemented in a way in order to simulate a real user base and how
the user inputs generate the quality numbers that the algorithms
produce.This is to observe and answer the main problem this ex-
periment addresses: Which of the two modified sorting algorithms
is able to efficiently sort an unsorted list of ids and their associated
number of points through pairwise comparisons. In other words,
the purpose of this experiment is to observe the modified algo-
rithms sort the recipe ids by comparing the ids in pairs. This differs
from regular sorting algorithms because the quality numbers that
simulate user preference and are used by this experiments Elo and
Hot Rank algorithm are not typically observable. The numbers gen-
erated within this experiment are created in order to simulate those
quality numbers in order for the algorithms to sort them through
pairwise comparisons.
From this experiment it has been concluded that the Elo and the Hot
Rank implementations of having an exponential time complexity of
O(n2) andO(n2(loдn)) respectively, the Elo algorithm is able to sort
quicker than the Hot Rank algorithm. Therefore this experiments
implementation of the Elo algorithm is better suited for sorting
recipe id’s within a list. This is discussed further in the section 6.
From these results, this experiment has contributed to the question
of which of these algorithms are better suited to make pairwise
comparisons.

2 BACKGROUND
As noted in the introduction, the purpose of this research is to
see if either the Elo algorithm or the Hot Rank algorithm is better
suited for sorting recipes id’s within a list. To conduct a preliminary
evaluation of the algorithms, we have generated synthetic time and
quality values. The purpose of this section is to describe how the
two original systems function.

2.1 Elo Algorithm
Arpad Elo, the creator of the Elo rating system, originally designed
the system for competitive chess, where there are two players.
Within Elo’s rating system, a players rank represents their ability
within the game. This rank is dependent on how many wins and
losses the player has. When two chess players compete against

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Woodstock ’18, June 03–05, 2018, Woodstock, NY Priscilla Coronado

each other, the algorithm predicts the outcome of the match based
on its probability formula. For example, the formula used in this
implementation is:

P = 1/1 + 10R1−R2/400

where P is the probability, R1 is one of the players rank and R2
is the second players rank. For example, player one has a ranking
of 1200 and player two has a ranking of 1000. To calculate the
probability of player ones rating versus player two the equation is
represented as:

P = 1/1 + 101200−1000/400
The result is .76. This means that player one has a 76 percent

chance of winning against player two. The algorithm also calculates
the probability of player two winning against player one. This is
represented as:

P = 1/1 + 101000−1200/400.
The result is .24 or 24 percent. If the first player wins the amount

of points awarded are taken from player two. The difference be-
tween player ones rating and player twos rating determines how
many points are taken from the loser. In the case of the example,
because player one has a higher chance of winning and therefore
is expected to win, only a few points would be taken from player
two. However if player two wins, which is not expected, then many
points would be transferred.

If there is a draw between player one and player two, the Elo
algorithm awards the player with the lowest ranking with points
and the player with the highest ranking loses points. The amount
of points is dependent on the difference between the two rankings
of the player. In the example used before where player one has
a rating of 1200 and player two has a rating of 1000, player two
receives more points than if their rating is 1100. This is because
1100 is closer to 1200 than 1000.

2.2 Reddit Hot Rank Algorithm
The Hot Rank algorithm is most notably used by Reddit, a forum-
based website that receives millions of views per day. The Hot Rank
algorithm is one the algorithms used to sort the posts within the
website. It does this by looking at the number of upvotes as well
as the number of downvotes and the submission time of the post.
Within Reddit, a user has the ability to give a post single point.
This point can either be contributed to the number of upvotes a
post has or to the number of downvotes. This is what calculates the
submission score. The submission score is a number that represents
how popular a post is on Reddit. For example, if there is a post with
200 upvotes and 100 downvotes, then its score is 100 points. This is
one parameter that helps the algorithm determine how popular or
"hot" a post is. The second parameter that the Hot Rank algorithm
takes into consideration is the submission time. This is used to
calculate how much time has transpired from when it has posted til
the current date. As time goes by, the posts submission score will
not decrease but instead newer posts are ranked higher than the
first. This is to ensure that more recent posts are viewed by users.

Figure 1: A basic flow chart depicting the relationship be-
tween the database and the Elo algorithm and how the Elo
algorithm functions on a high level.

3 METHODOLOGY
This section will describe the design of each algorithm, how each
is built, the tools used to build them, and the database that holds of
the recipes.

3.1 PostgreSQL Database
The purpose of the PostgreSQL database is to host the data list
for the algorithms to use.This list is formatted with four columns:
[id, cuisine, ingredients, rank] where the id is the primary key, the
cuisine and ingredients are simple text data types and the rank is an
integer. In a fielded system, the ranks are generated through user
input. In other words, the recipe ids associated number of points
simulate real user input in order to create the observable quality
numbers that the algorithms will produce. Therefore, each recipe
is assigned a randomly generated rank (or number of points) that
never changes. This database then gets connected to a server that
hosts the algorithm scripts, and feeds the algorithms the necessary
data for them to begin sorting the list.

3.2 Implementation of the Elo Algorithm
As stated in section 2.1, the Elo rating system ranks players by
taking the probability of player one winning against player two
and the probability of player two winning against player one. In the
case of this experiment instead of players the competitors are recipe
ids that are queried from the PostgreSQL database. The recipe ids
are treated as players where each id is get compete against each
other and get updated Elo ratings. Like determining the probabilities
of winning between player one and two, the algorithm determines
the probability of recipe id winning against recipe id 2 based on
their original ranking. Their original ranking is the original amount
of points associated with the recipe id.

As stated in section 2.1, to calculate the probability the formula
below is used:

P = 1/1 + 10R1−R2/400

where P is the Probability and R1 and R2 are the rankings of the
first id and the second id. The outputted value, which is a decimal,
is stored within a variable. Instead of taking the probability again

Testing the Efficiency of the Elo ranking algorithm and Reddits Hot Rank algorithm Woodstock ’18, June 03–05, 2018, Woodstock, NY

Figure 2: A basic flow chart depicting the relationship be-
tween the database and the Hot Rank algorithm and how
the Hot Rank algorithm functions on a high level.

for R2 versus R1 the probability of R1 versus R2 is subtracted from
1.00. This decision was made because taking the probability of R2
versus R1 is the same as subtracting the probability of R1 from 1.00.
This result is also stored within another variable. This calculation
is used by the next function, EloRating.

The EloRating function does as follows: EloRating(id1, id2,R1,R1,K,d)
takes the the first id and second id, rating of both ids, a variable d
and a constant K in order to update the recipe ids rating.

: id1is the first recipe id it encounters within the list.
id2 is the second recipe id it encounters within the list after
recipe id 1.

:: R1 is the number of points associated with id1
: R2 is the number of points associated with id2
: Variable d determines which id has one. It is represented
with either a 0 or a 1 for either recipe id. The 0 means that
the recipe id has lost and the 1 represents that the recipe has
won.

: K determines the maximum number of points an id is able
to win or lose. In the case of this experiment the K value is
set to 30 because it is the number recommended by other
Elo rating systems that have been implemented in the past.

For example to update the recipe ids:
: id1 is A.
id2 is B.

:: R1 is 1200.
: R2 is 1000.
: The max amount of points a recipe can receive will be 30.

EloRating calls Probability to calculate the probability of A win-
ning against B. The result is .76. This gets assigned to a variable
in order to take the difference between 1.00 and .76. That result is
.24. This is the probability of B winning against A. If A wins then
variable d will be 1. This is so the algorithm knows which equation
to use to update the Elo ratings for the ids. That equation is the
following:

R1 = R1 + K(1 − P1)
R2 = R2 + K(0 − P2)

where R1 is the first id’s rating, K is the points, the d value is 1
to represent a win, and P1 is the probability of id 1 winning. The
variable R2 is the second id’s rating, K is the points, the d value is 0
to represent a loss, and P2 is the probability of id 2 winning. In the
case of the example the equation is be:

1207.2 = 1200 + 30(1 − 0.76)
992.8 = 1000 + 30(0 − 0.24)
The new ranking for R1 is 1207.2 and for R2 it is 992.8.
If id 2 wins, then both id rankings will be changed using these

equations:
R1 = R1 + K(0 − P1)
R2 = R2 + K(1 − P2)
where the variables represent the same as the previous two

equations but the difference is R2 has its d set to 1 to represent id 2
winning and R1 has its d set to 0 to represent it losing. The rankings
will be updated to the following:

1177.2 = 1200 + 30(0 − 0.76)
1022.8 = 1000 + 30(1 − 0.24)
These values are then taken to put into a list as such:
[(A, 1177.2), (B, 1022.8)]
In order to be used by the next function, Sort.
Sort(list) accepts the list of tuples that contain the id of the recipes

and their associated number of points. The number of points is the
current ranking for each recipe. Sort calls the function Probability
to calculate the probability of recipe id 1 winning against id 2. The
result is stored within a variable.

In order to replicate chance the Python library random is used
to pick a number between 0 and 1.00. If the probability of id 1 is
greater than the randomized number then that means id 1 won,
otherwise id 2 has won. It then calls EloRating to calculate the
updated ranking. It takes the results from EloRating, which is the
updated tuple, to append it onto the updated list to be sorted. The
list is then sorted by comparing the new rating of the first id and
the new rating of the second id. If the first id has a larger rating
then it is placed above the second rating. If the second rating is
larger than the first then there are no changes.

For example, the current list is:
[("A", 1200), ("B", 1000), ("C", 1200), ("D", 900)].
The function first compares "A" and "B" by calling the Probability

function on 1200 and 1000. The result is below:

P = 1/1 + 101200−1000/400
"A" has a .76 chance of winning against "B". This is stored into a

variable. Next, the function randomizes a number from 0 to 1.00.
In this example, the randomized number comes out to .50. If .50 is
less than .76 then that means "A" has won. In this case "A" does win
because .50 is less than .76. Then the EloRating function is called in
order to update the function. Since "A" won, its d value is set to 1.
This tells the algorithm to use the following equation:

R1 = R1 + K(1 − P1)
R2 = R2 + K(0 − P2)
where R1 is "A" and R2 is "B", K is 30, P1 is .76 and P2 is .24. This

is shown below:
1207.2 = 1200 + 30(1 − 0.76)
992.8 = 1000 + 30(0 − 0.24)
The results are then appended into a new list. The current list is:

Woodstock ’18, June 03–05, 2018, Woodstock, NY Priscilla Coronado

[(”A”, 1207.2), (”B”, 992.8), (”C”, 1200), (”D”, 900)].

Since id "A" has a higher rating than id "B" "A" is placed higher
than "B". The new result is:

[(”B”, 992.8), (”A”, 1207.2), (”C”, 1200), (”D”, 900)].

The same methods is used on id "A" and id "C" until the whole
list has their updated ratings and is sorted.

In the case of a tie, meaning that the probability of id 1 and id
2 are .50 and the randomized number is also .50, the d value is set
to 2 and the K value is set to 10. The algorithm is then uses these
equations:

R1 = R1 + K(1 − P1)
R2 = R2 + K(1 − P2)
The reason why the algorithm considers a tie as both players

winning and given a K value of 10 is because in the original Elo
algorithm draws result in both players gaining a number points.
The difference between the original algorithms method and this
implementation in this situation is the amount of points received
do not depend on the original rankings.

This implementation of the Elo algorithm is a simulation of
how the recipe ids will be ranked through pairwise comparisons.
Within a realistic environment the associated number of points
given to each recipe id and allows for the Elo algorithm to calculate
its values, will be given through user input as opposed to being
randomly generated. Therefore the numbers that are shown from
this experiment are not real numbers but a simulation to show the
hidden quality numbers that the Elo algorithm produces.

3.3 Implementation of the Hot Rank
Algorithm

The Hot Rank algorithm takes the submission time and the number
of upvotes and downvotes into consideration when determining
which recipe id is popular. For experimental purposes, we simulate
some aspects of the environment in which the algorithm operates.

The functions of the algorithm are described below:

Seconds(date) determines howmany seconds has transpired from
when the post was posted to the date. The date posted is generated
randomly to simulate a user posting a post at some certain time of
day. For example:

The list to be sorted is: [(”A”, 94), (”B”, 50)]. Within this experi-
ment the current date date is: 2019 − 12 − 1.

A date is randomized for "A" first. This date is 2012-01-20. A total
of 2872 days and 0 seconds have passed since "A"s date and the
current date. This result is passed into the variable td. This equation
is used to determine how many seconds are within 2872 days:

totalseconds = td .days∗86400+td .seconds+(f loat(td .microseconds)/
1000000

The current variables represent the following:

• td .days gives the number days without the extra seconds. In
this example td.days is be 2872 days.

• td .seconds gives the amount of extra seconds. In this example
td.seconds is be 0 seconds.

• td .microseconds gives the number of microseconds in td. In
this example td.microseconds is 2.4814e + 14.

With these results the equation to find the amount of seconds in
2872 days is:

248140800 = 2872 ∗ 86400 + 0 + (f loat(2.4814e + 14)/1000000
This result is used by the next function hot.

hot(ups,downs) determines how popular a post will be by taking
the number of upvotes, downvotes, and when the post was submit-
ted. The number of upvotes are the associated number of points
that the id has. For example, the previous example has the list:
[(”A”, 94), (”B”, 50)]. "A"s upvotes is 94. The number of downvotes
are randomly generated for each recipe id. This is to simulate users
downvoting the id. For this example the number of downvotes is 10.
The date submitted for "A", as stated previously, is 2012 − 01 − 20.
From these values it is able to calculate the following:

Score: Takes the difference between the number of upvotes and
downvotes. For example, "A" has 94 upvotes and 10 downvotes.
Therefore its score is 84.

Order: This is a logarithmic scale used to reduce the impact of
additional votes. While the experiment does not allow the action
of additional votes it remains in place to stay true to the Hot Rank
algorithm. The equation is: order = loд(max(abs(score), 1), 10). For
example, id "A"s weight is 1.9 = loд(max(abs(84), 1), 10).

Sign: Determines whether or not the score is negative or posi-
tive. If the score is positive it is presented as a 1 and if the score is
negative then it is represented as a 0. For example, the score for id
"A" is 84. Since 84 is positive, it is represented as a 1.

DateSeconds: Calculates the amount of seconds of the current
date through this equation: Seconds(date) − 1134028003. The num-
ber 1134028003 represents the UNIX timestamp for the date they
introduced the Hot Rank algorithm to the public. For example, the
current date in this implementation is 2019-12-1. Therefore DateSec-
onds is:
Seconds(248140800) − 1134028003 = −885887203
where 248140800 is the amount of seconds from the randomly gen-
erated date from the function Seconds and the current date.

To calculate how popular a recipe id is according to the Hot Rank
algorithm is through the use of the function:

hot = siдn ∗ order + DateSeconds/45000, 7
In the case of the example used with id "A" the equation is repre-

sented as:

5516.14 = 1 ∗ 1.9 + 248140800/45000, 7

This means that that the id "A" has a hot score of 5516.14. This
is the score that is used to determine what rank "A" holds within
the list.

sort(list) sorts the recipe id’s depending on their hot score. If
one recipe id is determined more hot than the other, then the list is

Testing the Efficiency of the Elo ranking algorithm and Reddits Hot Rank algorithm Woodstock ’18, June 03–05, 2018, Woodstock, NY

changed to reflect that by placing the id with the higher hot score
above the other id. For example:

The list [(”A”, 94), (”B”, 50)] has two ids, "A" and "B". The hot
score for "A" is 5516.14 and the hot score for "B" is 2161.7. It can be
assumed for "B" that it has received the same number of downvotes.
The function compares both hot scores in order to determine which
score is higher than the other. Id "A"s score is higher than id "B"s
therefore, id A is placed higher than "B" as such: [(”B”, 50), (”A”, 94)].

In the case of a draw between posts, then nothing will change
because this means that both id’s were submitted at the same time
and received the same amount of upvotes and downvotes. While
this is unlikely, it is still in place.

This implementation of the Hot Rank algorithm is a simulation
of how the recipe ids will be ranked through pairwise comparisons.
Values such as the hot score, the recipe ids associated number points,
the date, etc are values that are simulated and therefore not ob-
servable in the Hot Rank algorithm in a realistic setting. Therefore
the numbers that are shown from the Hot Rank algorithm are a
simulation to show the hidden quality numbers that the algorithm
produces.

4 RESULTS
For this experiment, big-O notation was used to describe how long
the Elo and Hot Rank implementations takes to sort. As described in
section 3.2, the implementation of the Elo algorithm contains a total
of three functions. These functions are the Probability function, the
EloRating function, and the Sort function. Each of these functions
has their own time complexity that will be measured. Each of the
functions calls the other. This adds onto the overall time complexity
of the algorithm. To begin, each of the Elo algorithms functions are
listed below:

• Probability: Since this function only returns a result its run
time is O(1).

• EloRating: Its purpose to do simple computations and ap-
pends therefore the runtime is O(1).

• Sort: This function has two tasks: updating the Elo ratings
of all of the id’s as well and sorts the final updated list. Both
task has a time complexity of O(n). Therefore Sorts overall
time complexity isO(n2). While Sort does call EloRating and
Probability, their run times are minuscule enough to not
count it towards the overall time complexity.

This implementation of the Elo algorithms time comlexity is
therefore: O(n2)

The Hot Rank implementation within this experiment has four
functions: DateSeconds, hot, score, and sort. Each of these functions
time complexity is listed below:

• DateSeconds: Determines the date the ids were "posted" and
how much time has transpired between that day and the
current day. Due to the required randomization for each id,
the time complexity of DataSeconds is O(n).

• hot: This function calculates how popular a post is. Its calcu-
lations give it a time complexity of loдn .

• sort: The purpose of this function is to sort the list of ids
based on each ids hot score. This task has a time complexity
of O(n2).

Since each function calls each other their time complexities get
added together. Therefore the run time for the Hot Rank algorithm
is O(n2(loд2)).

In order to test how long each algorithm practically takes, they
were given different sized lists to sort. Below are the results:

Items Hot Rank Elo
50 58.90 0.00037
100 118.53 0.00072
150 179.89 0.0012
200 239.27 0.0023
1000 1940.66 0.039

The numbers within the table are approximations of how long
the implemented versions of the Elo and Hot Rank algorithm will
take. The time varies each run. The difference in time between the
Hot Rank algorithm and the Elo algorithm is large. While Hot Rank
takes minutes to sort the lists, the Elo algorithm does not even take
a second.

5 FUTUREWORK
With the data collected from the tests done within this experiment
a possible next step is to build a fully functional recipe app for
Android and iOS. This recipe appwould function similarly to Tinder,
a dating application, where users would be able to swipe through
recipes, have the ability to rate them, see which recipes are this
weeks most popular, etc. The application is meant to be simplistic
in design in order to give users a more streamlined experience. In
other words, the application would not have many functionalities
since it would be aimed towards users who do not have a lot of time
in their day to cook. The application must be able to respond to
the users input and have the ability to sort the recipes according to
their rank. Therefore the recipe application requires and algorithm
that meets this necessity. Another step for this experiment is to run
the implemented algorithms on bigger data sets. This is to study
how the algorithms practically function with a real data.

6 CONCLUSION
Despite the results given by each algorithm, it is not clear whether
or not the original implementations of Elo and Hot Rank are better
for pairwise comparisons. Furthermore, from the final sorted list
that each algorithm produced the Hot Rank algorithms list made
the most logical sense. This is because the ids were sorted based
on popularity rather than probability. Therefore the most popular
recipe id is ranked the highest rather than the one who happen to
win. Nonetheless, the simulated implementations for this experi-
ments show that the Elo algorithm is better suited in sorting the
recipe id’s due to each of its functions time complexity. This can be
contributed to Hot Ranks reliance to more time complex functions
as described in section 3.3.

REFERENCES
[1] Bar-Ilan, Mat-Hassan, and Levene M. Methods for comparing ranks of search

engine results.
[2] Michel Billard. An introduction to ranking algorithms seen on social news aggre-

gators.
[3] Clark, Connor, Kalita, and Jugal. Comparison of algorithms for the pairwise

alignment of biological networks.
[4] R Compton. Elo outside of the competitive gaming realm.
[5] Jin Huang and Charles X. Ling. Rank measures for ordering.

Woodstock ’18, June 03–05, 2018, Woodstock, NY Priscilla Coronado

[6] HugoDarwood. Epicurious - recipes with rating and nutrition.
[7] Arpit Mishra. Elo rating system: Common link between facemash and chess!
[8] Amir Salihefendic. How reddit ranking algorithms work.

[9] Swipehelper. How the ’elo score’ is calculated and what you can do to improve
yours.

[1] [2] [3] [4] [8] [5] [6] [7] [9]

	Abstract
	1 Introduction
	2 Background
	2.1 Elo Algorithm
	2.2 Reddit Hot Rank Algorithm

	3 Methodology
	3.1 PostgreSQL Database
	3.2 Implementation of the Elo Algorithm
	3.3 Implementation of the Hot Rank Algorithm

	4 Results
	5 Future Work
	6 Conclusion
	References

