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ABSTRACT
It is common knowledge that databases power important research
along with the web and other widely used tools. It is less known that
a database’s driving force is its index. A database’s index has the
functionality of a traditional index; it is used to find the location of a
specific item or value in a pool of information. In this case, the data
set is what is indexed. Indexes are complex structures with many
variations each having their strengths and weaknesses. This applies
to the subset of indexes used for every type of data, for example,
text data, relational data, etc. This paper describes a comparison
via simulation, SIM_TSDB, of two specific index structures used for
time series data. The two indexes are the R-tree and the Inverted
Index. SIM_TSDB, written in Python, tests the speed of finding a
value’s location through the index. Both these structures are not
conventionally used for time series databases. Therefore, a large
part of my contribution is adapting them for this use. It does not
interact whatsoever with an actual time series database. The results
answer the question, which of the two indexes should be used
depending on what is being done with time series data and the
volume of it.
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1 INTRODUCTION
A major component of any database back-end is the index. Its func-
tion is the same as the index of a book. It is used to look up the
location of a concept in the book, to save the reader from scanning
the entire book for what they are looking for. In a database, it is
used to locate specific data points, which databases need to do for
many purposes. This paper will focus on locating data points stored
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in a database for the purpose of querying. The database index it-
self is a data structure of which there are many variations. The
structure depends on what database it is used for, e.g. relational,
graph, time series, etc. However, even in a specific database type,
there are many different structures used. This paper focuses on
the data structures used for indexes in time series databases. Time
series data represents sequential measurements taken over time. It
is extremely common for data to be measured at specific times espe-
cially in astronomy, biology and the web [4]. Time series databases
are in need of more focus as it becomes increasingly popular.
Because individual structures have their own traversal algorithms
to locate values, different structures are more efficient than others
when it comes to certain queries. The time series database index
structure that should be used depends on the data and what it will
be used for. Due to the high volume of in-use time series database
index structures, the scope of this paper pertains to two structures,
the R-tree structure[1], and the Inverted Index [6]. The reason
for the selection of these specific structures is because they differ
widely. Their structures are discussed in the background section
for further detail.

This paper attempts to answer the question, in what situations
are each of these index structures favorable and when would an-
other option be preferable? In order to answer this question, a
simulation is conducted in Python containing three main parts. The
three main parts are made up of core simulation containing a query
generator, and the two structures and their respective algorithms.
The simulation tests the structure’s algorithms outside of a data-
base. The simulation does not test the efficiency on retrieval of data,
only locating the data along with other methods of the index, such
as creation, addition, and removal of values. Because of this, the
only data required to perform such tests are the timestamps. These
timestamp values are taken from non-synthetic data sets.

The simulation approach to answering the question of which
time series database is most fitting for a user’s goals has many
limitations. Because a simulation of the indexing structures alone,
many other factors of a database that affect its usage are not be-
ing considered. Storage is a key area of focus when designing an
index structure and must be efficient in order for success. Never-
theless, storage is not considered in this paper. Furthermore, it is
only comparing two of the many in-use time series index structures.

The second goal of this paper is to explore the use of unconven-
tional index structures for time series data. Both the R-tree and
Inverted Index structures were first established and are standards
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for databases other than time series databases. These structures are
adapted to take timestamp values as input rather than their original,
intended input. It is valuable to experiment with already working
techniques and applying them to other areas for the purpose of
exploration.

2 BACKGROUND
2.1 Search Queries
Because this paper discusses the tests of queries across different
index structures, it is helpful to the reader to know what these
queries represent. Several of the queries used in this paper are
intuitive as to their purpose such as an insert or remove. However,
the three other tested queries, equality query, bounded range query
(range query), and unbounded range query are less obvious. An
equality query is when a single value is searched for. What is being
searched in a range query is all values between two specified values.
For example, a retrieval of all timestamps between the year 2015
and 2016 is a range query. An unbounded range query is a query
similar to a range query, but the values being retrieved are not
bounded by two values. For example, a retrieval of all values later
than a specific time.

2.2 Traditional Index Structure
2.2.1 B+ tree. The B+ tree is one of the most commonly used
structures for commercial databases [13]. Although research is
still underway for efficient indexing for time series data, the B+
is commonly used for indexing it’s databases. The B+ tree was
developed from the B tree, also known as the Binary tree. Much
like the B+ tree, the Binary tree is a popular structure for indexes.
A simple way to understand the Binary tree is that it is a tree
representation of Binary search on an array. In the B tree’s structure,
each node contains a single entry with a pointer to a file containing
information about the entry. A major downside to the B tree is that
its height can easily become excessively long, which significantly
increases search time. Generally, the height of a B tree grows quickly
because of two reasons. Firstly, A Binary tree is limited to only two
children per node. Secondly, because each entry is stored in the
same node as its pointer, each node can only hold one entry due to
the substantial amount of space a pointer requires. Therefore, more
nodes are necessary to hold the data stored in the index. The B+ tree
is a variation of the B tree that does not have these limitations. The
B+’s internal nodes have to ability to have more than two children
and each node holds multiple entries. To allow multiple entries in
a node, the pointers are held in the leaf nodes.
The B tree’s node’s left child must contain a value that is less than
it’s value and it’s right child must contain a value that is greater
than it’s own. The B+ tree follows the same rule, however, there
can be multiple entries in each node, and a value q is set for the
maximum number of pointers each node contains. Each leaf node,
except the node containing the greatest entries, dedicate one of
it’s pointer to the leaf node that is consecutively greater than it.
This is shown in figure 1. In this example, q = 5. Although this
figure shows the insertion of value 29, the B+ insertion algorithm
is not described, because it is not necessary for the understanding
of this paper. A B+ tree performs an equality query rather simply
by traversing down the tree until found. On the other hand, the B+

Figure 1: The Structure of the R-tree [12]

tree’s algorithms for range and unbounded range queries utilize
the pointers in the leaf nodes as to avoid unnecessary traversals.

2.3 R-Tree
The R(rectangle)-tree was built in the 1980s by Antonin Guttman
as an extension of the B+ tree. The R-tree was created as a solution
to the B+ tree’s inability to hold multimedia data, which was begin-
ning to be widely used when it was created. For the most part, in
order for the R-tree to be able to hold multimedia data, it needs to
be capable of holding high dimensional data. It is now mostly used
for spatial data, including GIS data [12] i.e. cities, buildings, etc.
The general idea of the R-tree is that data is bounded by rectangles.
These rectangles have sub-rectangles for which the lowest level
of rectangles contains the actual data values with pointers to files,
similar to how pointers are stored in the leaf nodes of the B+ tree.
The R-tree represents this rectangle structure; each node represents
the area of a rectangle. The structure is shown in figure 2. These
rectangles are called minimum bounding rectangles (MBR), they
are rectangles with the smallest possible area that bounds it’s sub-
rectangles. The R-tree is height balanced, meaning that all the leaf
nodes are at the same level.
Time series databases are not typically indexed using the R-tree,
however, it can be adapted so that it is compatible with time series
data. This has been done in the past by mapping timestamps to a
higher dimension value [12], SIM_TSDB uses a different approach.
For SIM_TSDB, rather than using rectangles, a time range is used for
each node in the place of a rectangle’s area. Each node represents a
range of time. The root node contains the largest time range of all
the nodes, each child node narrows down the range until the leaf
node is reached. The leaf nodes contain the entries and pointers.
Similar to the B+ tree, the R-tree’s leaf nodes point to each other
chronologically.
The insert algorithm for inserting a value into the R-tree [13], does
not rely on the structure containing rectangles. Therefore, the insert
algorithm is not changed for this scenario. The search algorithms
require consideration as well in order to ensure their success for
time series data. Because this adaptation of the R-tree contains leaf
nodes that use pointers to keep an account of the order of the leaf
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nodes, range and unbounded range queries can be easily performed.
While the insertion algorithm is complex, the search algorithm is
simple and easily implemented.
Because the application of the R-tree on time series data is one
dimensional like the B+ tree, it is important to emphasize the dif-
ferences between the B+ tree and the SIM_TSDB application of the
R-tree. The B+ tree has a maximum number of children allowed,
whereas the R-tree does not. Furthermore, due to the concept of the
MBR, the insertion algorithm for the R-tree takes into account the
smallest possible range each node needs to represent it’s sub-tree,
while the B+ tree’s internal nodes do not represent values in the
same way. This implementation of the R-tree uses different algo-
rithms and node structures than the B+ tree.

Figure 2: The Structure of the R-tree [12]

2.4 Inverted Index
The Inverted Index structure is a well-established text database
index. It has been adapted for the use of time series data[6] prior to
SIM_TSDB. When used in it’s traditional, text database framework,
it consists of a lexicon describing every word in the database. This
lexicon is stored in an array and it alphabetically ordered. Each
value in the array is mapped to a file obj, known as an inverted
index, containing the information about this word. The method of
adapting the Inverted Index used for SIM_TSDB is intuitive. Rather
than the lexicon array containing a list of words, it contains each
unique timestamp. To allow better searching, the values in the
timestamp lexicon will be ordered from earliest to most recent. A
figure of the Inverted Index is shown below.

A strength of the Inverted Index is that, since it is very simple, it
is easy and relatively fast to implement. However, the adaptations
it undergoes to be used for a time series database add complexities
that a traditional time series index does not have.

Figure 3: The Structure of the Inverted Index [2]

3 METHODOLOGY
3.1 Overview
The general workflow of the simulation is shown in 4. It takes
a CSV file of a time series data set as input, creates two index
structures for the data set, queries each structure and stores the
results. Three different data sets were used for testing. The three
main divisions of the simulation consist of the two data structures
along with a driving function. The driving function contains a query
generator which generates and carries out queries. It also serves
as a communication line between the simulation and the database
that stores the simulation results.

Figure 4: Design of Simulation

3.2 Data Pre-processing
In order to test and debug the simulation, data is needed. Often,
finding data a data set that fulfills certain criteria is easier said than
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done. Additionally, it is generally a given that unprocessed data
needs to be cleaned so that it can run smoothly through a program.
Because this simulation is only testing the index structures of time
series databases, the only needed part of each data set are the
timestamps. This significantly cuts down on the amount of data
cleaning required, however, the unclean data can cause issues when
filtering out the timestamps out of its complete data set containing
other information. For example, extra commas inside of entries
will miss-align the columns putting a non-timestamp value in a
timestamp column. Pre-processing of the data is needed to fix issues
like this. The code itself is not very long to extract these specific
values, but the process of finding all errors when ingesting the
data and correcting them can be time-consuming. This is not done
manually, however, there are typically many typos and errors in
the data that must be worked around one way or another in the
ingesting program. Another factor that needs to be accounted for
in the pre-processing of the data is re-formatting of the timestamp.
This is done automatically using the datetime Python module
in a simple program as part of the driver function. Converting the
timestamps into a consistent format helps ensure that the rest of
the simulation will run smoothly.

3.3 Simulation
3.3.1 Index Structures. Each of the two index structures are rep-
resented in their respective modules. Both modules contain query
methods that are carried out by the driver program. These specific
query methods are, for the most part, universal across index struc-
tures. The methods in table 1 are used in both index structures.

Method Description
create_index Creates an empty instance of an index

structure.
insert_value Inserts a timestamp into a given index

structure.
remove_value Removes a specific value from a give

index structure.
equality_query Queries the index for one specific

value
bounded_query Performs a bounded range query for

a range of values between two times.
unbounded_query Performs an unbounded range query

for a range of values that are not be-
tween two times

delete_index Deletes entire instance of the index
Table 1: Index Structure Methods

The algorithms for these methods are adapted from [13]. The algo-
rithms for the R-tree structure are much more complex than that
of the Inverted Index. The equality_query,
bounded_query andunbounded_query are special caseswhen
it comes to the Inverted Index. The Inverted Index is a text database
index that has been adapted for a time series database. In order to
create these methods, the Inverted Index is sorted by time. Binary
search is used to find the bounds of the ranges or the specific value.

The adaptation of the R-tree uses a method similar to the B+ tree
for the bounded_query and unbounded_query.

3.3.2 Driver Program. As mentioned in the overview, the driver
program pre-processes data, creates the index structures, queries
these structures and stores the results. In order to secure accurate
results, the number of queries tested must be large. In order to avoid
manually authoring a large number of queries, a query generator
is used. The generator runs 500 iterations of randomly-generated
queries for each of the three data sets on both of the index struc-
tures and stores the results. Each iteration runs each query except
the create_index and delete_index methods. This system
queries for a random time value between the earliest and latest
timestamp in the data set.

For queries requiring two timestamps, such as the bounded and
unbounded queries, a second random value is used.

3.4 Storing Data
A separate database to store values is necessary for several different
functions. Most importantly, it is needed to store the results, since
there is a large amount of data that needs to be analyzed following
each simulation. Each data set stores 5,000 query results alongside
the timestamps from each data set. The size of each data set can be
found in the results section. Furthermore, the cleaned timestamp
values need to be stored prior to creating an index. These values
are also used for the query generator so that it can generate queries
based on the actual data it is querying. A relational PostgreSQL
database is chosen to store this data. It is a suitable option because
it communicates well with Python, and can easily compare the
queries between the two structures seeing as it is relational. The
module psycopg2 is used to write PostgreSQL commands and
alter the database directly from the driver program. Each data set
has its own database with four tables which have the same layout.
The first table holds the timestamp values. The next two tables hold
the results from querying, one table is for the Inverted Index and
one for the R-tree. The last table holds all the queries that were
tested on each index structure. The tables with the results consist
of a column with a query id value and the time it took to complete
the query. The query table holds two columns with a query id and
the query corresponding to said query id.

4 RESULTS
4.0.1 Inverted Index. The following figures show the results from
the Inverted Index testing.

Method Data Set 1 Data Set 2 Data Set 3
insert_value 0.062777 0.170205 1.419168
remove_value 0.000056 0.00006 0.000057
equality_query 0.00003 0.000042 0.000052
bounded_query 0.00007 0.000079 0.00015
unbounded_query 0.000364 0.000889 0.008774
Data Set Size 8,089 21,165 160,214

Table 2: Index Structure Methods
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Table 2 shows the average seconds for each query as a result of
the query generator. 500 queries were performed on each type.

Figure 5: Logarithmic Chart of Inverted Index Results

Figure 5 is a logarithmic chart representing table 2.

Figure 6: Equality Query Series Results

Figure 7: Bounded Query Series Results

The above tables show the change in time for each search query
over the removal of values. Each iteration represents the removal
of 500 random values.

Figure 8: Unbounded Query Series Results

5 DISCUSSION
Databases serve as mechanisms for such things as holding, query-
ing, adjusting, updating data. Different strategies for how a database
functions serve better depending on the variation in the data type
and volume. On examining the results for the Inverted Index, there
is a clear indication that the time for the insert_value and
unbounded_query are affected by the size of the data set. In
chart 2 there are different results for each of the three data sets for
those two queries. When taking into account the sizes of the three
data sets, Data Set 3 being by far the largest, the time increases with
the size of the database. The results for the unbounded query series
further support these findings. Generally, removing the values from
the index didn’t have much of an effect on the query times, but the
large gap between Data Set 3 and the other two data sets shows
how the difference in size affects the time of the unbounded query.

6 CONCLUSION AND FUTUREWORK
This project has designed and tested an adaptation of the Inverted
Index and designed the an adaptation of the R-tree for time series
data. The first step in future work is to complete tested for the R-
tree. Because the sample size is rather small, testing the simulation
on more data sets of larger size would be more telling on the effect
of the different index structures and their strengths and weaknesses.
Furthermore, the visualizations created are rather simple due to
time constraints. Putting more thought and time into making par-
ticularly appealing visuals would have been ideal and helpful for
spreading the results of the simulation. The simulation itself also
only tests two index structures out of a wide array of existing time
series index structures. There are many different ways of testing
the efficiency of index structures, for example rather than timing
the methods, an in-depth analyses of each algorithm’s complexity
would provide useful information.
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