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ABSTRACT
This hand gesture recognition system provides a convenient
tool for Google Chrome users to navigate through the browser
on a personal computer. It allows a user to scroll, zoom in
and out, and move forward and backward a page by using
a handful of static gestures. The system utilizes the built-in
camera, and the live video feed is preprocessed. The simplified
frames are passed into a k-nearest-neighbor classifier, which
has been trained with 300 images (50 images for each static
gesture). Each frame is given a predicted label based on the
target labels from the training set and the value of k. The
predicted label is passed into the Google API, where each
label is mapped to its associated navigational function.
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1 INTRODUCTION
When humans communicate with each other, they often use
hand gestures and body language to help convey their verbal
messages [9]. When humans interact with computers, some
methods of human input include a mouse or touchpad, key-
board, and speech. In this paper, I implement another form of
human-computer interaction (HCI), which utilizes a standard
laptop camera and software. The camera provides real-time
video feed such that an individual can produce various hand
movements that correspond with di�erent functions, all with-
out touching the computer. The aim of this project is to use
these hand gestures to navigate through Google Chrome, a
widely used web browser. Such navigation includes scrolling,
zooming, and moving forward or back a page in a particular
window.

Gesture recognition has real world applications. One of the
important roles of technology is to make life more convenient
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for humans. Gesture recognition systems have this characteris-
tic, due to the intuitiveness of many hand gestures. Currently,
gesture recognition is being employed in virtual/augmented
reality (VR/AR) systems, such as Nintendo Wii’s Wiimote
[19] controller, and Microsoft’s Xbox Kinect [12]. However,
the hardware devices used in these products are expensive and
have limited applications – mostly within the entertainment
sector.

Due to financial constraints, many people can not access
these technologies. On the other hand, many people do have
laptops and computers, and use browsers like Google Chrome
in their everyday lives. Gesture recognition systems that use
a basic camera can exploit this accessibility and provide a
cheaper method of gesture-based HCI.

This paper outlines the implementation of a gesture recog-
nition system to navigate Google Chrome. Python was used to
implement this software, along with OpenCV, an open-source
library that focuses on computer vision tasks [3]. Initially, the
system takes the camera’s video feed to detect and isolate the
user’s hand in a region of interest (ROI) within the camera’s
video dimensions. After this stage, a machine learning model
that uses K-Nearest-Neighbors classifier will predict a given
gesture, based on the set of training gestures. Upon accu-
rate recognition of a gesture, the gesture’s label (e.g. "zoom
out") will be read into Google Chrome’s API, to simulate the
clicking of the back button to navigate back a page.

2 BACKGROUND
Gesture recognition is a relatively young field of research, but
the importance of using gestures to interact with a computer
is great. Gestures remove the need to touch your device and
can be read from a distance. These features are very useful
if a user’s hands are dirty. Gestures are already commonly
used among people, so there are gestures that are intuitive.
This means that it is very simple to learn and easy to use
[16].

Gestures can be broken up into two categories. There are
static gestures, or postures, that are still images of the hand
in a certain configuration (e.g. the index and middle fingers
extended, other fingers balled up into a fist). Static gestures
can be recognized in numerous ways. Conversely, there are
dynamic gestures, which are gestures that involve physical
movement, and can be identified with machine learning and
deep learning. These gestures are a sequence of images of
a hand performing a gesture. In this project, I use static
gestures as input.
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2.1 Hardware Devices
Although gesture recognition is not something prevalent in
the homes of everyone, much progress has been made in the
way of utilizing gestures in technology. The Xbox Kinect is an
accessory to the Xbox One gaming console. It is a sensor that
sits above or below the TV, and can recognize individuals,
as well as detect the user’s hands. The primary use in this
context is to play games on the Xbox console [12].

Another commercial hardware system is the Leap Motion
Controller. Leap Motion has built a device that contains all
of the sensors and capabilities for gesture recognition, but
it was made for developers so they could create games or
other types of applications [1, 2, 5, 15]. Unfortunately, a
general consumer may not know how to program with the
Leap Motion Controller.

Finally, Google has been developing Project Soli, which
is a microchip that contains the hardware for fine, precise
gestures. Google utilizes radar technology to accurately sense
any gesture within its range. However, this project is still in
development and has not yet been commercialized. Contrary
to Google’s robust hardware, gesture recognition on a laptop
doesn’t need to be so precise, as a majority of the gestures
being used in this project are forms of waves rather than
small finger gestures, which is what Project Soli has been
built to recognize [8].

2.2 Software
The software development in gesture recognition includes
OpenCV, the primary library that is used in gesture recog-
nition [3]. OpenCV is used for a variety of computer vision
tasks, including image processing and facial recognition. An-
other library that provides computer vision tools is Python’s
Scikit-learn library [17]. Similar to OpenCV, Scikit-learn pro-
vides methods for manipulating images and models for facial
and gesture recognition.

Another development is the use of supervised machine
learning methods to recognize gestures. One of the more
frequently used machine learning techniques to recognize dy-
namic gestures is the Hidden Markov Model (HMM) [13]. The
HMM is a flexible tool used for modelling time series data,
and is prevalent in many applications, such as computational
molecular biology, data compression, artificial intelligence,
and pattern recognition, to name a few. The problem of dy-
namic gesture detection and classification contains time series
data, and these gestures can be represented as probability
distributions over a sequence of images. This mathematical
function provides probabilities of the occurrence of di�erent
possible outcomes. In the case of dynamic gesture recognition,
these di�erent outcomes are the possible directions a specific
hand posture could move over a sequence of frames in a video.
The technique gets its name from two specicfic character-
istics. The model is "hidden" because it assumes that the
observation at time t is generated by a process, and the state
of this process is hidden from the observer. It is denoted as
a "Markov" model because it satisfies the Markov property.
This means that at any given frame during dynamic gesture

recognition, the current state of the model encapsulates all
of the information it needs to know about the states before
it, allowing the model to predict future processes [6].

Contrary to dynamic gesture recognition, a classifier can
be used to recognize static gestures. The classifier being used
in this gesture recognition system is the k-nearest-neighbors
(KNN) classifier [17]. KNN classification uses a simple algo-
rithm that stores a training set of data and classifies new
data – in this case a frame from the video feed – based on
its similarity to the k nearest data points. The training set is
divided up into several target labels (or classes), and the label
given to the new data point is based on what the labels are in
the k nearest data points. In other words, KNN classification
works based on the new data point’s feature similarity with
the training set. The predicted label is given based on the
majority of the k nearest data points.

KNN has been used in few image classification applications.
A group of researchers from India have used KNN classifi-
cation to classify images of flowers. The researchers created
a set of images of flowers in varying light conditions with a
cluttered background and various poses, and used texture
features to classify flowers [7]. KNN has also been utilized in
optical character recognition (OCR), which is classification of
printed or handwritten characters [14]. The researcher, Mogh-
nieh, lays out a method to recognize 500 scanned images with
noisy backgrounds with a 98 percent accuracy. He explains
his process of OCR using a histogram of oriented gradients
(HOG) as the feature set of the images, and performs KNN
with Scikit-learn’s KNeighborsClassifier [17].

The reasoning for why I chose to use a KNN classifier is
because this gesture recognition system has a limited "vocab-
ulary." In other words, there is a small set of gestures, each
varying from each other to a great degree. Since the gestures
will be drastically di�erent from one another, classification
of a gesture should be accurate without a more complex
method.

3 METHODOLOGY
In this project, there are five modules that the data flows
through. The live video feed that starts the pipeline originates
from the built-in camera. The framework is shown in Figure
1.

Figure 1: Design Framework
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3.1 Image Preprocessing
Prior to image preprocessing, a region of interest (ROI) is
defined for performing the gesture recognition. Since most
people are right handed, the ROI is o�set to the right side
of the frame. The size of the ROI is 300x300 pixels, which
allows a user to perform gestures at a comfortable position
and distance from the camera. Additionally, this reduces the
size of the array of pixels greatly, from an entire frame to
just a subset of the frame, which also reduces the amount of
computation needed. The gesture recognition is performed
only within this ROI. The ROI is shown in Figure 2 below.

Figure 2: Green box represents ROI.

3.1.1 Running Average. As the live video feed is being read
from the built-in camera, each frame undergoes preprocessing.
The first step is to compute the running average of the ROI.
In other words, the background becomes separated from the
foreground (hand gesture). This makes it easy to identify
what is the hand and what is not. A global background
variable is declared, followed by a running average function
that takes the first frame of the video feed, before a hand
is moved into the ROI, and defines it as the background.
Then, using an OpenCV method called absdi�, an absolute
di�erence is calculated between the background and current
frame containing the user’s hand, thus separating the hand
from the background.

3.1.2 Color Conversion. In the next step, every frame is re-
duced to the dimensions of the ROI using image slicing, then
converted to grayscale using OpenCV’s COLOR_BGR2GRAY
method. This grayscale image reduces the original frame from
an array of pixels with red, green and blue (RGB) channels
for each pixel to an array of pixels with a single value for each
pixel (this value represents the brightness of the pixel, i.e.
how white a pixel is. The conversion from color to grayscale
is shown in Figure 4 below.

(a) Static hand gesture. (b) Grayscale.

Figure 3: Original Frame to grayscale.

3.1.3 Binary Mask and Blurring. The running average func-
tion helps separate the hand from the background, but fur-
ther processing is needed to get a clear image of the hand.
A binary mask, or conversion of an image into black (0) or
white (255) pixel values. OpenCV provides two methods,
called THRESH_BINARY and THRESH_OTSU that take
a grayscale image and convert it into a binary mask via
thresholding. In thresholding, any pixel with a value lower
than a specified threshold is reduced to black, and any pixel
with a value greater than the threshold is increased to white.
THRESH_OTSU is a smart method of thresholding that
determines what the threshold should be. In a bimodal im-
age, that is an image with a grayscale histogram that has
two peaks, THRESH_OTSU will place the threshold value
between the two peaks, providing an optimal threshold value.
With this method, the binary mask may still contain some
noise that must be smoothed out. To do so, a Gaussian blur is
applied using OpenCV’s GaussianBlur function. The binary
mask of a gesture is shown before and after Gaussian blurring
in Figure 4b below.

(a) Binary mask. (b) Blurred mask.

Figure 4: Original Frame to grayscale.

3.2 Feature Extraction
Now that there is a blurred binary mask of the hand, the
features must be taken from the preprocessed ROI. By using
blob detection, we take information from white blobs in a
binary image and convert it into a few representative features.
Blob detection is the process of confining blobs (or connected
white pixels) in a binary image inside a bounding box or
circle [4, 11]. OpenCV contains a SimpleBlobDetector_create
function that can filter a binary image based on several
parameters, such as blob color, area, inertia, convexity, and
circularity. The blob detector will try to bound the blobs
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based on those parameters. Multiple blobs may be detected
in a binary image, but only the largest blob (hand) will be
used for calculations. One important feature is the area of
the convex hull, which is the minimum convex polygon that
contains the BLOB. Another feature used is the centroid, or
center of mass. The last feature extracted is the circularity of
the BLOB, which is the ratio of the perimeter of the BLOB to
the perimeter of a circle with the same area. Every frame will
be reduced to these features. In Figure 5 below, a bounding
circle and the convex hull are drawn.

Figure 5: Binary image with detected blob. Bounding circle
and convex hull are drawn.

OpenCV provides methods that give the coordinates of
the centroid as well as diameter of the bounding circle. These
are used to calculate the three features being stored for
classification of each frame.

3.3 KNN Classifier to Google API
In order for classification to work, I had to create a labelled
dataset for each gesture. To do this, I wrote a script that
would record live video for two seconds, preprocess each
frame, and store the binary images in separate directories. To
avoid having duplicate images of gestures, I moved my hand
around inside the ROI to simulate variations of a particular
gesture. I created eight directories, one for each gesture, then
wrote each image to the appropriate directory. This created
60 images per gesture, for a total of 480 images in the dataset.

To extract the features from each image, I used two meth-
ods. In the first method, I simply reduced the image to
one-third of the original size using image slicing. The dimen-
sions of each image went from 300x300 pixels to 100x100
pixels as a result. OpenCV represents grayscale and binary
images as 2-dimensional Numpy arrays, and Numpy provides
a method called flatten, which takes a 2-dimensional Numpy
array and converts it to a 1-dimensional Numpy array. After
flattening each image, they were all labelled based on the
directory they were stored in. Finally, the flattened arrays
were passed into a Pandas dataframe for classification. In
the second method, circularity, convex hull, and centroid
for each image were calculated using OpenCV methods and

passed into a dataframe. The resulting dataframe contains
only three features for each image, rather than all the pixel
values for each image as described in the first method.

Scikit-learn provides a KNeighborsClassifier function and
train_test_split function that passes a labelled dataset into
the classifier, and splits the dataset based on specified param-
eters. This results in a training and testing set that can be
used to test the accuracy of the classifier. By using various
splits (50/50, 30/70, etc.), the classifier can be trained with
various training sets. Additionally, the value of k can be tuned
to yield the greatest prediction accuracy.

After the testing phase is complete, the final step will be
to implement the classification within the code that performs
the gesture recognition in real time. The training set will
become the entire dataset that I created, and each frame
will be passed to the trained classifier as a testing set. The
classifier will then output a predicted gesture label any time
a user’s hand is within the ROI.

Finally, this predicted label is passed to the Google API.
The label is passed to Google Chrome’s command API, which
allows users to develop their own keyboard shortcuts. So, if
a predicted label is "point left," the text passed to the API
will be "Alt + Left-arrow." The window will act as if the
user pressed Alt and the left arrow key (move back a page).
The functions include scrolling up and down, moving forward
or backwards a page, and zooming in and out. With these
basic navigational functions, a user will be able to navigate
a webpage on Google Chrome e�ciently.

4 RESULTS
Currently, the testing phase is still in progress. However, the
first feature extraction method mentioned above has been
tested several times. By splitting the dataset in half, one
half can be assigned as the training set and the other the
testing set. By using Scikit-learn’s accuracy_score metric, the
accuracy of prediction can be determined. With the dataset
that represents every pixel as a feature, the KNN classifier
yielded accuracy in the range of 99.69 percent to 100 percent.
The time it takes the dataframe to fit the KNN classifier
is approximately 14 seconds, and the prediction stage takes
less than one second. The implications of the results will be
discussed in the following section.

As I have yet to test the second method that uses a dataset
of three features per image, no results have been determined.
However, the expectation is that the accuracy will not be as
high as the results from the first feature extraction method
due to the loss of information stored from each image. How-
ever, the time it takes to fit the KNN classifier should be
reduced, as the number of features per image is significantly
lower than in the first method. After testing the second
method of feature extraction, the method that yields the
fastest results will be used to recognize gestures in real time.

5 DISCUSSION
The first method for feature extraction yields near perfect
accuracy when testing. Most likely, this is due to the lack of
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noise in the image dataset. When creating the image dataset,
the background was dark, in contrast to my hand. Addition-
ally, a flashlight was shone onto the hand to increase contrast
between the foreground and background. This allowed for
very little noise, if at all, to be detected in the binary mask
preprocessing stage. Although each image for each gesture
label is slightly di�erent from one another, reducing the size
of the image by a factor of three may increase homogeneity
of the images in each class.

KNN classification is a lazy machine learning algorithm,
meaning that it stores all of the data from a dataset, but
doesn’t perform any computation until the prediction stage.
As such, it was expected that the prediction stage would be
relatively low. In order for prediction to work in real time,
the preprocessing stage and the prediction stage would need
to take less than or equal to one-thirtieth of a second, as
the live video feed on the local machine plays at 30 frames a
second. Unfortunately, it is expected that the preprocessing
of an image may take longer than a small fraction of a second,
even if the prediction relatively quick. So, in order to create a
real-time gesture recognition system, the preprocessing stage
must be reduced.

The mapping of each frame’s predicted labels did not per-
form as expected. There were many di�culties with Google’s
API. One such problem involved the use of the current win-
dow. The webpage couldn’t be accessed without the use of a
Google Chrome extension. Another issue that came up was
that certain Google Chrome keyboard shortcuts couldn’t be
overwritten. For example, a predefined keyboard shortcut
like copy (Windows: Ctrl + C, Mac: Cmd + C) could not be
mapped to a di�erent keyboard shortcut.

6 RELATED WORK
There have not been many gesture recognition systems that
have been used to control a browser. One project uses Ana-
conda (Spyder IDE) and OpenCV to develop a system that
uses gestures to automatically open up frequently used web-
pages on Google Chrome [10]. Unfortunately, this project is
very limited in its ability to control the browser. This browser
controller simply allows a few gestures to be mapped onto
di�erent webpages, and it will open up the webpage in a new
tab. This feature, although time-saving, doesn’t do much in
the way of interacting with the browser. The proposed project
will utilize OpenCV in Python for much of its framework
also, but the browser control will be more interactive. Ideally,
the proposed project will use Google Chrome’s command
API in order to change the browser navigational features,
like scrolling, going forward/back a page, etc. to control the
browser.

In another project, the developer used JavaScript and
jQuery to create an extension that allows users to scroll
through a webpage [18]. My proposed project will create a
library of gestures that can be recognized, and ideally the
program would be able to use these gestures for multiple
functions within the browser, like scrolling. Although this

project is similar to the project being proposed in this pa-
per, there is only one browser function being utilized with
gestures, whereas I hope to implement more features than
just scrolling. Additionally, this project used preexisting code
found on Github. Therefore, this project was more related to
the creation of the Chrome extension. The lack of research
in the field of gesture recognition with respect to browser
navigation implies that this is a relatively new idea, and there
exists room for development to provide users with a more
multi-modal, interactive navigation for browsers.

7 FUTURE WORK
Gesture recognition can be used in just about any application,
just as how a mouse or keyboard are used. However, they are
very e�cient, similar to how keyboard shortcuts or macros
can perform functions that would be more time-consuming
than using the mouse to navigate to perform a particular
function.

One possibility for future work is to implement a Google
Chrome extension that has all of the static gesture capabilities
(as planned in this project), as well as a variety of dynamic
gestures. In order to use dynamic gestures, the recognition
system must be able to see the transition of a gesture over
time, as explained in the Background section.

One of the possible future uses for this gesture recognition
system is to open or run applications with it. For example,
a user can perform a specific dynamic gesture to unlock a
computer or other device. This is similar to facial recognition,
but it doesn’t have the same risks associated with it (e.g. you
can’t use a picture of a user performing a gesture). This is a
more secure method for signing onto a device.

Another potential direction this project could move toward
is use within an application. In other words, gestures can
be mapped to an application’s controls and used instead of
the actual touchscreen, mouse, or keyboard. Gestures can be
implemented within an operating system, like MacOS, and
the gestures can replace keyboard shortcuts for navigation
between browsers and applications.

Gestures are not limited to computer applications and
gaming consoles. Gestures have already been utilized in mo-
bile devices and embedded systems. For example, certain
smartphones will turn the screen on when raised in a certain
way. The screen will turn o� when the phone is raised to
the ear. Apple’s Airpods can recognize a variety of gestures,
like taking the earbuds out of the ear or putting them in.
Music can be started or stopped based o� these gestures.
A smartwatch can turn its screen on when you flip your
palm downwards. These are all examples of gestures being
used in everyday devices. However, it can be taken further.
Hand waves can be used to perform calling functions on
smart devices. Even embedded devices can benefit from using
gestures.

Outside of these applications, gestures can be used to
learn or teach sign language. As more gestures are created
and added to the library of gestures, these can be used by
teachers to help students accurately perform sign language
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gestures. Students can perform these gestures in front of a
camera or other sensor to test competency and form of their
sign language abilities. Gesture recognition can be used to
facilitate the spread of sign language to individuals, and it
could even be used in place of a computer keyboard (assuming
a user’s vocabulary is large enough).
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