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ABSTRACT

Gerrymandering is the practice where voting district lines in a
state are drawn to benefit one party over another. To combat this
practice, computer-generated district plans can be utilized. One
way to generate district plans is to treat the geographical area like
a graph and model its population attributes, then divide up the
area according to these attributes. In this project, a graph parti-
tioning algorithm is created to generate compact electoral districts
in several states. The algorithm generates several district plans,
then finds the most compact ones by evaluating several attributes
measuring how spread out the population is in each district. The
best district schemes are then visualized using a mapping tool. An
evaluation tool calculates the same attributes for existing district
plans to quantitatively compare them to the generated plans. It
is found that the generated plans have more compact districts ac-
cording to the comparison of these values. A graphical analysis of
the visualized generated district plans compared to current district
plans also shows that the algorithm generated more contiguous
districts.
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1 INTRODUCTION

In the American electoral system, a voting district is a geographical
delineation used in the process of electing members of legislative
bodies. Existing administrative boundaries cannot be used as-is
because of divergent ratios of voters to representatives in major
towns and cities compared to more sparsely populated rural areas.
For example, a voter living in a metropolitan area with a population
of 1,000,000 people would have a vote that is 100 times weaker
than a voter in a town of 100,000 people in a first-past-the-post,
winner-takes-all election.!

Electoral district lines are meant to create proportional numbers
of voters across a region. The process of creating district lines differs
from state to state, but is commonly done by the state legislature.
Since the state legislature is controlled by a majority party, drawing
district lines is thus a partisan process. This inevitably leads to bias,
both subconscious and deliberate, in the creation of voting districts.

Table 1 lists the federal and state criteria for a valid district plan.

Ihttp://aceproject.org/main/english/es/esd01.htm

Equal population Legislative districts within a state must have equal population
Contiguity All parts of the district physically adjacent to each other
Administrative boundaries  Units like counties be kept together whenever possible
Compactness Contortion of boundaries and spread from a central core
Communities of interest Shared social, cultural, racial, ethnic, and economic interests

Table 1: Redistricting Criteria [7]

The manipulation of voting districts to profit one political party
over another is commonly known as gerrymandering. In 1812,
Elbridge Gerry, then-Governor of Massachusetts, signed into law
a bill that redrew the district lines of Massachusetts to benefit his
party. The Boston Gazette coined the term gerrymander, referring to
Governor Gerry and the shape of one of the newly created districts,
which resembled a salamander [12]. The point of gerrymandering is
to waste as many of the opponent’s votes as possible. Wasted votes
are votes which do not contribute to a candidate’s win; for instance,
any votes above fifty percent in a simple-majority two-candidate
race. If one party’s votes are concentrated in a few districts and
they win those districts by a large margin with lots of wasted votes,
their opponent can actually win the rest of the districts and get a
majority.

A solution to gerrymandered districting is computer-generated
district lines. Drawing district lines is analogous to a graph par-
titioning problem, where geographical areas are represented in
the form of a graph G = (V,E), with V vertices and E edges. The
solutions to the problem would be partition schemes which divide
G into smaller sections that satisfy specific criteria. In the case of
voting districts in the United States, some of these criteria are equal
population, contiguity, compactness, following existing administra-
tive boundaries, and preserving communities of interest. Solving
this partitioning problem computationally can help eliminate bias
from the districting process, while also reducing the human effort
needed to create these complicated divisions. Furthermore, with
these computer-generated districting plans, we can even train a sys-
tem to spot gerrymandering in an existing plan, and thus prevent
politicians from manipulating district lines to benefit their own
party. The existing research on gerrymandering and population di-
vision models includes several proposals for different methods and
algorithms to identify extreme districting plans, including those that
indicate gerrymandering. These include a computational approach
which compares one districting plan to a large set of plans in order
to quantify its characteristics [7]. Many of these algorithms rely on
treating the population division problem like a graph partitioning
problem [2] [17].

Since the goal of dividing a geographical area into electoral dis-
tricts is to group together people with common interests and stakes



in their community, this project focuses on solving the problem of
creating districts where voters would be equally spread out geo-
graphically. The graph partitioning algorithm focuses on dividing
population equally amongst all the districts, by iteratively changing
the groupings of population blocks and calculating how spread out
the voters in each district are and how high the standard deviation
of all the district populations is.

The major novel contribution of this project is the application of
graph partitioning algorithms in creating electoral districts, which
allows for a large number of district plans to be created and eval-
uated in a short amount of time. It also eliminates the potential
for partisan bias in the districting process. Another contribution is
the development of a visualization tool for the generated electoral
districts, and the evaluation of the compactness of the generated
districting plans compared to the existing districting plans for two
states: Pennsylvania and Connecticut.

This paper covers related research on gerrymandering strategies,
computationally generated districting plans, and graph partitioning
and its application in population modeling. It describes the design
and implementation of the graph partitioning algorithm and the
visualization tool. Lastly, the resulting districting plans generated
by the algorithm will be analyzed and evaluated in comparison to
existing districting plans, both visually and quantitatively.

2 RELATED WORK

In order to create a tool which generates fair and non-gerrymandered
districts, first we need to understand the common strategies and
indicators of gerrymandering. By examining the different ways
gerrymandered districts can be identified and how they can affect
elections, we can address these issues in the districting tool built in
this project. Secondly, an examination of existing tools for compu-
tationally generating districting plans is crucial in the process of
developing another tool. By comparing and evaluating the different
criteria and approaches that other researchers have implemented
to generate districting plans, we can examine the pros and cons
of the graph partitioning approach implemented in this project.
Lastly, relevant work on different approaches to graph partitioning
provides a mathematical examination of what graph partitioning is
and how it can be applied to population division in a geographical
area, which is the core of creating districting plans.

2.1 Gerrymandering Strategies

There are many different ways that a district plan can be gerryman-
dered. Understanding these strategies is a crucial step in finding
ways to create unbiased district plans.

The perverse-effects claim is the common notion that majority-
minority legislative districting helps Republican candidates. By
analyzing district lines drawn by both Democrats and Republicans,
and voting records, Shotts found that geographical constraints (i.e.,
compactness) or supermajority-minority mandates (requiring that
significantly more than half of a district population be minority
groups members) can waste Democratic votes [20]. This is because
many minority groups typically vote Democrat, based on survey
data. A model of optimal partisan gerrymandering was developed,
and it is also flexible enough to incorporate factors such as a third

type of voters, majority-minority federal mandates, and a new tech-
nique for analyzing geographical and informational constraints.
Using this model, the effects of each of these factors on wasting
Democratic votes in a district were analyzed. It was discovered that
when Democrats control redistricting, geographical constraints or
supermajority-minority mandates can force them to create some
districts where white Democrats are grouped together with Demo-
crat minority members, thus wasting their votes. However, this
doesn’t happen when Republicans control redistricting or with a
bare majority-minority mandate. The perverse-effects were also
found to be asymmetrical, as it only decreases the number of elected
Democrats and not Republicans.

Similarly, Chen and Rodden found that geographical distribu-
tion of parties’ supporters, in this case Democratic voters in urban
areas, can create a lot of wasted votes in many districts while also
showing a bias favoring Republicans who have more geographically
scattered voters [6].

One redistricting criterion, compactness, is rarely defined clearly
in legal terms, but it usually refers to how contorted a district’s
boundaries are, or how spread out it is from a central core. To put
it simply, if a district is shaped like a regular geometric shape and
its constituents live near each other, the district is likely compact.
Geography compactness requirements try to combat gerrymander-
ing, but Altman showed that it makes little difference unless the
compactness is very extreme [1]. Furthermore, compactness doesn’t
take into account the fact that neighborhoods are still segregated
and a majority party is much likely to have more geographically
diffused supporters compared to minority parties; in which case
compactness requirements do more harm than good.

Building on the concept of wasted votes, Stephanopoulos and
McGhee proposed the concept of the efficiency gap: the ratio be-
tween a party’s wasted votes and the number of total votes cast [22].
The bigger the efficiency gap, the more likely that a districting plan
is gerrymandered. The researchers computed the efficiency gap in
every congressional and state house plans from 1972 to 2012, and
found that the typical plan was fairly balanced over this period as a
whole, but in recent years the pro-Republican gaps grew larger and
would continue to do so according to sensitivity testing. Lastly, this
paper proposed setting a threshold for efficiency gaps in districting
plans, which aimed to prevent gerrymandering districting schemes.

In a 2008 report, Wall discussed different models of voting dis-
tricts that take into account opinion dynamics, community struc-
ture, and geographical distribution, all of which play major roles
in whether or not a state can be easily gerrymandered [23]. By
studying networks of users on the social media site Facebook, the
researchers created a model of how groups of people with similar
opinions and interests cluster together (i.e. neighborhoods, friends,
etc.) and how these groups can be utilized in a gerrymandering
districting scheme.

By studying the phenomena of gerrymandering from the per-
spective of a hypothetical gerrymanderer, Friedman and Holden
concluded that the commonly employed strategy of throwing away
unwinnable districts to waste the opponent’s votes while concen-
trating on winnable districts by grouping as many supporters to-
gether is actually not an optimal partisan gerrymandering scheme
[10]. They found that grouping Democrats and Republicans from
the two extremes of the spectrum together and the moderate ones



together actually allow for more opportunities of neutralizing your
opponents.

On a different note, Puppe and Tasnadi studied the concept
of an unbiased districting plan. It was shown via examples that
given simple geographical and population constraints, an unbiased
districting plan might not exist for every area. Furthermore, a proof
was presented which showed that determining whether or not an
unbiased districting plan exists for a given geography was an NP-
complete problem [15]. If finding an unbiased districting plan is an
NP-complete problem, then what would an approach for finding
reasonable and valid districting plans have to compromise in so that
it may still generate (albeit imperfect) partisan-bias-free solutions?

2.2 Computer-Generated Districting Plans

One novel approach to creating non-partisan, unbiased district
plans is to computationally generate them. This also allows for
a large number of valid district plans to be generated in a short
amount of time, with quantifiable methods to evaluate them.

Chou et al. proposed an evolutionary algorithm designed and
implemented to generate a large number of legally valid districting
plans for the city of Philadelphia, which were then evaluated for
“compactness” (defined in this paper as the largest intra-district dis-
tance in a districting plan) by both human subjects and a validated
surrogate fitness (VSF) function [8]. The evolutionary algorithm
generated districting plans based on a single contiguous district-
ing plan which was then mutated by moving neighborhoods from
adjacent districts around at every iteration. These plans were exper-
imentally evaluated for fitness, which in this case was a measure
of compactness. By comparing the results obtained from both the
human evaluators and the VSF function, the researchers overcame
a common weakness of Interactive Evolutionary Computation -
the cost in time and labor, and human fatigue - by automating
the subjective fitness evaluation of the districting plans. One of
the main ideas of this paper is how districting plans are evaluated
based on the requirements for contiguity, equal population, com-
pactness, and preservation of political and administrative regions
(neighborhoods, counties, etc.) By quantifying these criteria, the re-
searchers successfully automated the generation of a large number
of different legally valid districting plans.

Chu et al. introduced an algorithm called the Colonial Algorithm,
used to draw legislative boundaries that satisfy compactness and
population variances, while also retaining relatively simple and
clear district lines [9]. The process is controllable and visible, and
can speed up the redistricting process and prevent gerrymandering.

Using a dynamic network model that employs depth-first search
and breadth-first search, Wang et al. showed that district lines that
attain continuity and compactness could be drawn quickly and
detect current gerrymandering in a state [24].

By conducting computer simulations of the districting process,
Chen and Cottrell created non-gerrymandered districts to generate
electoral results from [5]. These results were then compared with
real electoral results of congressional races. It was found that while
gerrymandering did have an identifiable effect in some states, the
net effect was small and unlikely to be the cause of the partisan
imbalance in Congress.

Liu et al. proposed a parallel implementation of an evolution-
ary redistricting algorithm [12]. The algorithm includes spatial
evolutionary algorithm operators which take into account spatial
characteristics and effectively search the solution space for config-
urations which are legally valid. By utilizing supercomputers, the
performance of the algorithm can be improved so that a large set of
viable districting plans can be generated in a short amount of time.
Since generating just one of these solutions is commonly a very
resource-intensive and difficult task, plagued with human bias, this
large set of districting configurations can massively assist lawmak-
ers in developing viable districting plans which are computationally
proven to be free of partisan bias and gerrymandering.

Rincén-Garcia et al. proposed and tested a multiobjective simu-
lated annealing algorithm for districting [18]. The multiobjective
approach allowed for improvement in measures of compactness
and population balance, objectives which are usually ignored in
a single objective approach. The simulated annealing algorithm
allows for the generation of new districting plans from a seed plan,
which is then iteratively improved over time with the multiob-
jective approach. The novel method was tested on real electoral
data from Mexico, and showed better performance (higher quality
districts regarding compactness and population equality) than a
single objective simulated annealing algorithm. This method using
a multiobjective approach can provide the missing link needed
to generate districting plans which can compromise for natural
constraints.

Optimization Modelling in a GIS Framework: The Problem of Politi-
cal Redistricting by Macmillan et al., in the book Spatial Analysis and
GIS, described optimization modeling and how implementing math-
ematical optimization models in a GIS framework could improve
the redistricting process and prevent gerrymandering by individual
redistricting [13].

2.3 Graph Partitioning

The major contribution of this project is the creation of a graph
partition algorithm which treats a geographical area like a graph,
where the graph attributes are population attributes. Many different
graph partitioning schemes can then be explored to create district
plans.
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Figure 1: Example by Dixon and Plischke:
(a) Party P wins 1 seat and party C wins 8
(b) Party P wins 7 seats and party C wins 2 [2]



Apollonio et al. introduced a combinatorial model where a dis-
tricting plan was represented by a partitioned rectangular grid, with
red/blue nodes representing clusters of voters [2]. By analyzing
models with antagonistic red and blue coloring, it was shown that
after a number of graph cycles, the gap between the two colors
could get extremely large (sometimes as large as a color-balanced
map graph would allow). This showed that partisan bias in district-
ing plans could create a real discrepancy in electoral results. An
example of how different divisions can favor one party over another,
even if the number of votes doesn’t change, is shown in figure 1
[2]. The number of votes for C is 24 and for P is 21, so they almost
have equal numbers of votes. But if partitioning scheme in 1.a is
used, then P wins one district and C wins eight. In the scenario of
1.b, P wins seven districts and C only wins two.

Ricca et al. studied districting by modeling it with graph partition
[17]. In order to obtain districts with compactness and population
balance, the proposed approach utilizes weighted Voronoi regions
(partitioned regions of a plane based on distance from pre-computed
points). The distances were updated iteratively in order to ensure
equal population as much as possible.

3 DESIGN
3.1 Framework

Census data ESRI Shapefile Graph partition algorithm Mapping tool

Figure 2: Design Framework for Districting Application

The software components of this project consist of five main
parts. The first is a web scraping tool which retrieves the 2010
census data files from the United States Census Bureau website.
The second is an ESRI Shapefile parser which reads the census data
into their corresponding geospatial shapes and census attributes,
adapted from work done by Brian Olson on his redistricting tool
[14]. An ESRI (Environmental Systems Research Institute) Shapefile
is a data format which stores geometric and attributes information
of geospatial data [11]. The graph partition algorithm uses the
population attributes produced by the Shapefile parser to generate
several districting plans and evaluate them. The mapping tool then
takes the modified Shapefiles produced by the graph partition al-
gorithm and visualizes the districting plans. Lastly, an evaluation
tool computes different measures of compactness for the existing
district plans and compares them to our generated plans.

3.2 Graph Partitioning

For the graph partitioning algorithm implemented in this project,
the population attributes focus on compactness. The three attributes
calculated to find the most compact districting plan are the average
distance between a voter and the center of their district in kilome-
ters (km/p), the population difference between the least populous
district and the most populous district (spread), and the standard de-
viation of district populations (std). The differences in populations
of all districts measure how spread out voters are across a state, and

it is an indicator of how equally distributed voters are. This is why
these values also contribute to evaluating how compact districts
are. These values are used by Olson to evaluate the districting plans
generated by his redistricter, and are adopted to evaluate the results
of this project because the graph partition algorithm implemented
in this project is also designed to create compact districts, similar
to the objectives of Olson’s redistricter [14].

The graph partitioning algorithm creates the districting plans by
treating each district as a graph region with population attributes
assigned to them by the census data. These regions are represented
by the tabular census blocks containing population data. In every
iteration, the algorithm tries out different groupings of these blocks,
and evaluates these groupings using the aforementioned values in
order to arrive at the best districting plans. The calculation of the
geographical center of a district is adapted from work by Olson in
his redistricting tool. Essentially, the districting plan is the result
of solving a graph partitioning problem, and the districts hold
certain attributes which are as equal to each other as possible, while
maintaining a regular shape and preserving existing administrative
boundaries as much as possible. This creates a fair districting plan.

3.3 Mapping Tool

The mapping tool utilizes an ESRI Shapefile parser to overlay the
district lines on top of a state map. ESRI Shapefiles can support
point, line, and area features, which are parsed from the census
data files [11]. ESRI Shapefiles store nontopological data, which
means that each geographical feature stored are self-contained and
includes data which link it to other features in the same data set.
The ESRI Shapefile parser was adapted from work by Brian Olson
[14]. The districting plans are displayed with different districts
highlighted in different colors.

3.4 Evaluation Tool

To evaluate the generated districting plans, the aforementioned
population attributes used to measure compactness in a district
are analyzed and compared to existing districting plans. The tool
built for this purpose parses the shapefiles of current districting
plans for Pennsylvania and Connecticut (obtained from their respec-
tive state legislature websites) and calculates the aforementioned
compactness values for these plans using the population data for
each district available in the shapefiles. These values are then used
to quantitatively compare our generated districting plans to the
current districts.

4 IMPLEMENTATION

4.1 Data

The 2010 Census data is taken from the United States Census Bureau
website [4]. One of the data files is the tabular blocks and their
boundaries for each geographical areas. The tabular block data file
has the geographic coordinates of the start and end nodes for each
block. This data connects to the census edges and faces data files. The
edges data include the geometry and attributes of each topological
primitive edge. Each edge is delineated by a start node and an end
node, and these edges are the boundaries that create the tabular
blocks. Each edge has a unique Line Identifier value. Each edge also
has identifiers for its left and right faces, which link to information



Left & right
faces

Edges <
Line IDs

Addresses
Faces -
< Demographic

data

Tabular
Blocks
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in the faces data files. Each face encompasses an address range, and
includes population data about households in that range. Each face
and edge also has an identifier for which county and state it belongs
in, and the county boundaries and attributes file is useful in the map
visualization. Figure 3 represents the structures and relationships
between these census data files.

4.2 Evaluation

Using the evaluation tool, values measuring how spread out the
population of districts in existing Congressional district plans can
be calculated. In a compact district, voters should be equally spread
out from the center of their district. Furthermore, they should be as
close to the center as possible. A districting plan where this average
distance is minimized is a compact districting plan. Equal popu-
lation spread throughout different districts and a small standard
deviation between the populations of all the districts also create
a better districting plan. Therefore, these values will be compared
between our generated plans and the existing plans.

5 RESULTS

The generated graph partitioning plans are evaluated for their com-
pactness, measured by the three attributes of the average distance
between a voter and the center of their district in kilometers (km/p),
the population difference between the least populous district and
the most populous district (spread), and the standard deviation of
district populations (std). Since some of the worst gerrymandering
schemes achieve their goal by creating unusually-shaped districts,
districts with contiguous shapes are also less likely to be gerry-
mandered. There have been algorithms built for this evaluation
process, such as the one in Cho and Liu [7]; however, in this case
the evaluation for contiguous districts is done via visual inspection
of the mapped district plans.

Figure 4 is a Congressional district plan for the state of Pennsyl-
vania generated by the graph partition algorithm and visualized
with the mapping tool. Pennsylvania has 18 districts.

Figure 5 is the Pennsylvania Congressional districts from 2011
to 2018, before the court-mandated redistricting of Pennsylvania
[19]. Compared to our generated district plan, we can see that the
three districts in the southwestern corner of the state (district 12,
14, and 18) are very irregularly shaped, especially compare to those
same districts in our generated plan. In the southeastern corner of
the state, the green, orange, and yellow districts (district 6, 7, and
16, respectively) are also not contiguously shaped, compared to the

Figure 4: Pennsylvania Congressional district plan gener-
ated by the application

Figure 5: Congressional district map of Pennsylvania (be-
fore the 2018 court-mandated redistricting) [19]

districts in the southeastern corner of the map in figure 4. District
10 (dark brown), in the northeastern part of the state, is also much
less contiguous than the same district (light pink) in our generated
district plan. Generally, we can see that our map contains much
more contiguous districts than the existing districts.

Table 2 contains the values measuring compactness calculated
during the iterations the graph partition algorithm went through
to arrive at the final district plan. The district plan visualized in
figure 4 is generated on iteration number 8971, with the lowest
average distance between a voter and the geographical center of
their district.

Table 3 contains the values measuring compactness calculated
using the evaluation tool for the Pennsylvania Congressional dis-
trict plan from 2011 to 2018.2 The shapefile that the evaluation
tool uses to calculate these values is downloaded from the Penn-
sylvania Redistricting: The Legislative Guide to Redistricting in
Pennsylvania website [16]. As we can see, the average distance
between a voter and the center of their district is almost three times
’In February 2018, Pennsylvania went through a court-mandated redistricting af-
ter the Pennsylvania Supreme Court ruled that the Congressional Districts were an
unlawful partisan gerrymander in violation of the Pennsylvania Constitution. See

more: https://thehill.com/homenews/state-watch/374561-pa-supreme-court-releases-
new-congressional-map



km/p | spread | std gen
Best km/p 32.59 | 6159 1647.00 | 8971
Best spread | 32.61 | 4947 1609.04 | 6980
Best std 32.59 | 5173 1365.19 | 9855
Table 2: Population attributes for the generated Pennsylva-
nia Congressional district plan in figure 4

km/p | spread | std
62.26 | 50200 12083.21

Table 3: Population attributes for the 2011-2018 Pennsylva-
nia Congressional district plan in figure 5

larger than that of our generated district plan (62.26 and 32.59, re-
spectively). The population difference between the most and least
populous districts is almost ten times larger (50,200 and 6,159), and
the standard deviation of the district populations is also almost ten
times larger (12,083.21 and 1,647.00).

Figure 6 is a Congressional district plan for the state of Connecti-
cut generated by the graph partition algorithm and visualized with
the mapping tool. Connecticut has 5 districts.

Figure 6: Connecticut Congress district plan generated by
the application

Figure 7 is the current Congressional district map of Connecticut
[21]. As we can see, district 1 (red) is very irregularly shaped, com-
pared to the same district (teal) in our generated plan in figure 6.
Similarly, district 3, 4, and 5 (pink, green, blue, respectively) are
also not contiguous shapes, while the same districts (blue, purple,
red, respectively) in figure 6 are much more regularly shaped.

Table 3 contains the values measuring compactness calculated
during the iterations the graph partition algorithm went through
to arrive at the final district plan. The district plan visualized in
figure 6 is generated on iteration number 779, with the lowest
average distance between a voter and the geographical center of
their district.

Figure 7: Current Congressional district map of Connecticut
[21]

km/p | spread | std gen
Best km/p 22.26 | 5887 2320.42 | 779
Best spread | 22.35 | 1265 516.78 | 847
Best std 22.35 | 1265 516.78 847

Table 4: Population attributes for the generated Connecticut
Congress district plan in figure 6

km/p | spread | std
42.50 | 24174 9866.42
Table 5: Population attributes for the current Connecticut
Congressional district plan in figure 7

Table 4 contains the values measuring compactness calculated
using the evaluation tool for the current Connecticut Congressional
district plan. The shapefile used by the evaluation tool is down-
loaded from the Connecticut General Assembly website [3]. As we
can see, the average distance between a voter and the center of their
district is almost double that of our generated district plan (42.50
and 22.26, respectively). The population difference between the
most and least populous districts is almost four times larger (24,174
and 5,887), and the standard deviation of the district populations is
also almost five times larger (9,866.42 and 2,320.42).

6 CONCLUSION

This project focuses on the implementation of a graph partition
algorithm which groups different census tabular blocks together
to create districts. These groupings get evaluated during every
iteration, and at the end the best grouping is visualized. This visu-
alization is graphically compared to a map of the existing district
plan. An evaluation tool is created to parse the shapefiles of exist-
ing district plans for the states of Pennsylvania and Connecticut,
evaluate them by calculating the compactness measures, and then
compare these values to those of the generated plans.



As we can see from the comparison of our visualized district
plans and the current district plans of the states of Pennsylvania
and Connecticut, the generated plans for both states have more
contiguous and regularly shaped districts. Using the evaluation
tool to calculate the average distance between a voter and the
center of their district, the average voter in our generated plans are
much closer to the geographical center of their district compared to
the existing district plans in both states. Similarly, the population
difference between the most and least populous districts and the
standard deviation of all districts’ populations are both much lower
for our generated district plans than those of the existing district
plans. Therefore, regarding the creation of compact districts, the
graph partition algorithm is better than the current plans created
by state lawmakers.

7 FUTURE WORK

The evaluation tool could be modified to also visualize the current
district plans given the shapefiles obtained from state legislature
websites. However, not every state has these files available. Further-
more, there are many other criteria to be considered when drawing
district lines, such as preserving existing administrative boundaries
and communities of interest (i.e., racial or socioeconomic communi-
ties). It would also be interesting to analyze the racial and income
data of each district and their political affiliation to see how the
generated district plans can change the results of elections. These
types of information are available in the census data and could be
addressed in future work.

On another note, there has been research questioning whether an
unbiased solution will always exist for a district plan [15], or if ger-
rymandering even significantly affects elections at all [5]. These are
interesting questions to consider when studying gerrymandering.

ACKNOWLEDGMENTS

The author would like to thank Dr. Xunfei Jiang for her assistance
and feedback in the preparation and execution of this project. The
Department of Computer Science at Earlham College also enabled
the completion of this project. Brian Olson and his work on his
redistricting tool was a vital part of the implementation of this
project.

REFERENCES

[1] Micah Altman. 1998. Modeling the effect of mandatory district compactness on
partisan gerrymanders. Political Geography 17, 8 (Nov 1998), 989-1012. https:
//doi.org/10.1016/s0962-6298(98)00015-8

N. Apollonio, R.I Becker, I. Lari, F. Ricca, and B. Simeone. 2009. Bicolored graph

partitioning, or: gerrymandering at its worst. Discrete Applied Mathematics 157,17

(2009), 3601 - 3614. https://doi.org/10.1016/j.dam.2009.06.016 Sixth International

Conference on Graphs and Optimization 2007.

Connecticut General Assembly. 2007. Connecticut Congressional District Data.

https://www.cga.ct.gov

United States Census Bureau. 2010. United States 2010 Census TIGER Data.

https://www2.census.gov/geo/tiger/TIGER2010/

[5] Jowei Chen and David Cottrell. 2016. Evaluating partisan gains from Congres-
sional gerrymandering: Using computer simulations to estimate the effect of
gerrymandering in the U.S. House. Electoral Studies 44 (1 12 2016), 329-340.
https://doi.org/10.1016/j.electstud.2016.06.014

[6] Jowei Chen and Jonathan Rodden. 2013. Unintentional Gerrymandering: Political

Geography and Electoral Bias in Legislatures. Quarterly Journal of Political

Science 8 (2013), 239-269. https://doi.org/10.1561/100.00012033

Wendy Cho and Yan Liu. 2016. Toward a Talismanic Redistricting Tool: A

Computational Method for Identifying Extreme Redistricting Plans. Election Law

Journal 15, 4 (11 2016), 351-366. https://doi.org/0.1089/elj.2016.0384

[2

3

=

[4

[7

[8] Christine Chou, Steven Kimbrough, John Sullivan-Fedock, C. Jason Woodard,
and Frederic H. Murphy. 2012. Using Interactive Evolutionary Computation (IEC)
with Validated Surrogate Fitness Functions for Redistricting. In Proceedings of the
14th Annual Conference on Genetic and Evolutionary Computation (GECCO °12).
ACM, New York, NY, USA, 1071-1078. https://doi.org/10.1145/2330163.2330312

[9] Hongjiang Chu, Yue Wu, Qiang Zhang, and Yuehua Wan. 2011.  Colo-
nial Algorithm: A Quick, Controllable and Visible One for Gerrymandering.
Springer Berlin Heidelberg, Berlin, Heidelberg, 424-430. https://doi.org/10.
1007/978-3-642-19853-3_62

[10] John N. Friedman and Richard T. Holden. 2005. Towards a Theory of Optimal
Partisan Gerrymandering. Technical Report. Department of Economics, Harvard
University, Cambridge, MA.

[11] Environmental Systems Research Institute. 1998. ESRI Shapefile Technical De-
scription. http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[12] Yan Liu, Wendy Cho, and Shaowen Wang. 2016. PEAR: a massively parallel
evolutionary computation approach for political redistricting optimization and
analysis. Swarm and Evolutionary Computation 30 (2016), 78-92. https://doi.org/
10.1016/j.swevo.2016.04.004

[13] William Macmillan, Todd Pierce, S. Fotheringham, and Peter Rogerson. 2013.

Optimization Modelling in a GIS Framework: The Problem of Political Redistricting.

CRC Press, 221-246. https://books.google.com/books?id=Hirdl1ZFE38C

Brian Olson. 2017. Redistricter. https://bitbucket.org/bodhisnarkva/redistricter/

src/default/

Clemens Puppe and Attila Tasnadi. 2008. A computational approach to unbiased

districting. Mathematical and Computer Modelling 48, 9 (2008), 1455 — 1460.

https://doi.org/10.1016/j.mcm.2008.05.024 Mathematical Modeling of Voting

Systems and Elections: Theory and Applications.

Pennsylvania Redistricting. 2018. The Legislative Guide to Redistricting in

Pennsylvania. http://www.redistricting.state.pa.us/

Federica Ricca, Andrea Scozzari, and Bruno Simeone. 2008. Weighted Voronoi

region algorithms for political districting. Mathematical and Computer Modelling

48,9(2008), 1468 — 1477. https://doi.org/10.1016/j.mcm.2008.05.041 Mathematical

Modeling of Voting Systems and Elections: Theory and Applications.

[18] E.A. Rincén-Garcia, M.A. Gutiérrez-Andrade, S.G. de-los Cobos-Silva, P. Lara-
Velazquez, A.S. Ponsich, and R.A. Mora-Gutiérrez. 2013. A Multiobjective Algo-
rithm for Redistricting. Journal of Applied Research and Technology 11, 3 (2013),
324 - 330. https://doi.org/10.1016/S1665-6423(13)71542-6

[19] JURIST Legal News Research Services. 2018. Pennsylvania 2011 District
Map. https://www.jurist.org/news/wp-content/uploads/sites/4/2018/03/PA_
2011_map.png

[20] Kenneth W. Shotts. 2001. The Effect of Majority-Minority Mandates on Partisan
Gerrymandering. American Journal of Political Science 45, 1 (2001), 120-135.
http://www.jstor.org/stable/2669363

[21] Ashley Smith. 2011. Connecticut District Map. https://imgur.com/ELYurYm

[22] Nicholas O. Stephanopoulos and Eric M. McGhee. 2015. Partisan Ger-
rymandering and the Efficiency Gap.  The University of Chicago Law
Review 82 (2015), 831-900. https://lawreview.uchicago.edu/publication/
partisan-gerrymandering-and-efficiency-gap-0

[23] James F. Wall. 2008. Considering Opinion Dynamics and Community Structure

in Complex Networks: A view towards modelling elections and gerrymandering.

Technical Report. University of Oxford.

De Wang, Jing Liu, and Zhi-Peng Zhou. 2009. Dynamic Modeling of Political

Districting Problem. In 2009 International Conference on Computational Intelli-

gence and Software Engineering (CiSE "09). IEEE. https://doi.org/10.1109/cise.

2009.5365452

[14

[15

[16

(17

[24


https://doi.org/10.1016/s0962-6298(98)00015-8
https://doi.org/10.1016/s0962-6298(98)00015-8
https://doi.org/10.1016/j.dam.2009.06.016
https://www.cga.ct.gov
https://www2.census.gov/geo/tiger/TIGER2010/
https://doi.org/10.1016/j.electstud.2016.06.014
https://doi.org/10.1561/100.00012033
https://doi.org/0.1089/elj.2016.0384
https://doi.org/10.1145/2330163.2330312
https://doi.org/10.1007/978-3-642-19853-3_62
https://doi.org/10.1007/978-3-642-19853-3_62
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://doi.org/10.1016/j.swevo.2016.04.004
https://doi.org/10.1016/j.swevo.2016.04.004
https://books.google.com/books?id=Hirdl1ZFE38C
https://bitbucket.org/bodhisnarkva/redistricter/src/default/
https://bitbucket.org/bodhisnarkva/redistricter/src/default/
https://doi.org/10.1016/j.mcm.2008.05.024
http://www.redistricting.state.pa.us/
https://doi.org/10.1016/j.mcm.2008.05.041
https://doi.org/10.1016/S1665-6423(13)71542-6
https://www.jurist.org/news/wp-content/uploads/sites/4/2018/03/PA_2011_map.png
https://www.jurist.org/news/wp-content/uploads/sites/4/2018/03/PA_2011_map.png
http://www.jstor.org/stable/2669363
https://imgur.com/ELYurYm
https://lawreview.uchicago.edu/publication/partisan-gerrymandering-and-efficiency-gap-0
https://lawreview.uchicago.edu/publication/partisan-gerrymandering-and-efficiency-gap-0
https://doi.org/10.1109/cise.2009.5365452
https://doi.org/10.1109/cise.2009.5365452

	Abstract
	1 Introduction
	2 Related Work
	2.1 Gerrymandering Strategies
	2.2 Computer-Generated Districting Plans
	2.3 Graph Partitioning

	3 Design
	3.1 Framework
	3.2 Graph Partitioning
	3.3 Mapping Tool
	3.4 Evaluation Tool

	4 Implementation
	4.1 Data
	4.2 Evaluation

	5 Results
	6 Conclusion
	7 Future Work
	Acknowledgments
	References

