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ABSTRACT

With the increasing popularity of music streaming, music recom-
mender systems are important instruments for increasing digital
music consumption. However, collaborative filtering, a technique
widely used in recommender systems, is not generally adapted in
this domain because the technique does not scale well with large
amounts of data. This paper proposes a recommender system us-
ing collaborative filtering with an improved runtime by using a
more efficient data-representation scheme and considering a partial
section of the dataset.
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1 INTRODUCTION

In the last 25 years, the use of recommender systems has expanded
rapidly [2, 14]. These systems, designed to produce recommenda-
tions that match users’ interests, are incorporated into areas such
as news, entertainment, and research [4, 13]. One common tech-
nique used by recommender systems is collaborative filtering, which
produces recommendations for a user based on choices of users
with similar preferences [9]. This paper describes a recommender
system for music tracks using collaborative filtering.

In recent years, music streaming has become increasingly preva-
lent. Over the first half of 2018, more than 400 billion on-demand
song streaming activities occurred in the United States, which
equates to 360.1 million albums consumed [1]. Good recommender
systems for music tracks can further increase the consumption
for digital music and therefore are important tools for streaming
platforms.

Different techniques have been published in the field of music
recommendation, notably the deep-content approach proposed by
van den Oord et al. [19] and the automatic tag generation method
by Eck et al. [7]. Collaborative filtering is also used in this field;
however, the algorithm does not scale well with large datasets [11].
This makes it hard for researchers to use this method with a dataset
that can potentially have millions of users and music tracks. It
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should be noted that recommender systems of large streaming ser-
vices such as Spotify or Pandora may be built using a combination
of collaborative filtering with other techniques [5]. Nevertheless,
details about how these systems are implemented are not publicly
available.

It is important to build a recommender system using collabo-
rative filtering that not only is accurate but also runs efficiently.
In this project, I attempt to build a recommendation systems for
music tracks using collaborative filtering with two optimization
methods, dataset rescaling and automatic halting. These methods
will be built and tested with different parameters to address the
performance issue while retaining an acceptable accuracy.

2 BACKGROUND
2.1 Collaborative Filtering

Collaborative filtering is a successful and widely-used method for
generating recommendation in various fields [8][3][6]. The method
provides recommendations for a target user by estimating the utility
of different items based on the habits or ratings of other users [14].
The advantage of this technique is that the behavior of a user can
generally be predicted from users who are similar. Furthermore,
systems that use collaborative filtering can work with any type of
items and can generate recommendations of different types within
the same system [10].

However, this technique also has some drawbacks. The first
major drawback is scalability. In a commercial setting, collabora-
tive filtering algorithms are required to search tens or hundreds of
thousands of users to produce a recommendation. This makes it
difficult to recommend items in real time, especially when the num-
ber of users and number of items are extensive. This also requires
a substantial amount of space. Traditional collaborative filtering
algorithms use a two-dimensional matrix to represent the data,
where the columns represent individual users and the rows repre-
sent individual items. In practice, this matrix will be very sparse,
as most users in many large commercial websites are estimated to
consume less than 1% of the contents [15]. Therefore, the matrix
representation can be an inefficient and space-consuming method.

In the next section, we discuss different types of rating systems.
In sections 2.3 and 2.4 we describe prior attempts to improve collab-
orative filtering. The method in 2.3 uses neighborhood formation
[14]; the method in section 2.4 uses a clustering model [18].

2.2 Types of User Rating Used by
Recommender Systems

Determining the similarity of different users requires recommender

systems to attain a numerical value for every user-item pair which

represents the user’s rating of the item. In this section we discuss
two types of user ratings that can be used by recommender systems.
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(1) Explicit rating. In this type of rating, users explicitly provides
feedback for different items on a numerical scale (i.e. from
1 to 5 where 5 means “strongly like” and 1 means “strongly
dislike”). Since ratings are provided directly by users and
do not have to be inferred, it is generally considered a good
rating system [15]. However, it is not practical for users to
provide ratings for every item. Thus, recommender systems
that work with this rating scheme can only make use of the
rated items unless they have a method to derive feedback
implicitly for the unrated items [15].

(2) Implicit rating. In this rating system, ratings are not provided
by users, but are predicted based on users’ activity. For in-
stance, if someone has not provided a rating for a certain
song but has listened to it more than 20 times, she will likely
give the song a high rating.

2.3 Neighborhood Formation

The neighborhood formation method was proposed by Sarwar et
al. [14]. We will first examine their approach and then consider an
analysis of the approach by Su and Khoshgoftaar [17].

The neighborhood formation method aims to find a set of n users,
given a user c, such that the ordered set S = {c1, ¢2, ..., ¢y} has the
following property: the similarity function, sim(c, ¢;) < sim(c, c;)
for all i < j. The similarity function can be the Pearson correla-
tion method, or the cosine method. The results are used to form
neighborhoods. This can be done by using the k-nearest neighbors
approach, which forms a neighborhood around any customer c
by selecting k customers closest to c, or by using the aggregate
method. After generating different neighborhoods, it generates rec-
ommendations in two ways: most-frequent item recommendation
and association rule-based recommendation. In their evaluation
model, they concluded that their method could scale better with
large datasets. The method also produced higher-quality recom-
mendations.

An analysis of this approach was published by Su and Khosh-
goftaar [17]. The authors determined that the method was easy to
implement, did not need to consider the content of the items recom-
mended, and could scale well with items that were rated similarly.
However, they also noted that the approach did not perform well
with a sparse dataset.

The work of this paper is different from Sarwar et al’s in that it
takes the whole dataset into consideration rather than any particu-
lar neighborhood.

2.4 Cluster Model

The method of using a cluster model was proposed by Ungar and
Foster [18]. In this section, We will summarize the details and results
of their work, then compare it with the method proposed in this
project.

The cluster model is an approach to reduce computing time and
raise recommendation quality. In a traditional approach, all users
and items are modeled using a matrix. However, Ungar and Foster
argued that such representation are inefficient because users have
different behavior and thus it is be better to divide the users into
groups, or “clusters,” where each group consists of more like-minded
users. This method improved efficiency because recommendations
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were made within groups; the recommendations were also better
because they were made from more similar groups of people.

Using this model on data of customers from CDNow, a shopping
website for compact discs, the authors concluded that clustering
people based on CDs they purchased was hard because the data
were sparse (most people only buy one CD). However, the model
produced great results when users were clustered using CD clusters
(which were CDs by the same artist). An approach using cluster
model may reduce the computation time, but does not guarantee
good recommendations.

Compared to Ungar and Foster’s work, the implementation col-
laborative filtering algorithm of this paper, which will be discussed
in more detail in section 3, has a longer runtime. However, since the
method considers the majority of the users in the dataset instead
of a specific cluster, it is expected to produce better results.

3 METHODOLOGY

This methodology proposed in this paper consists of three main
components: Data representation, the collaborative filtering func-
tion, and model evaluation (see figure 1). We first introduce a formal
definition for the tasks this paper aims to solve. Then, we will dis-
cuss the dataset used in this work and how it is represented. The
next section is the implementation of the collaborative filtering al-
gorithm that will be used in the paper to produce recommendations.
The final component introduces the steps to evaluate the model.

Dataset Unaltered Data

[
[
S

Collaborative

Set some values to0 | T11eMNE

Record Compare with actual results

Accuracy

Recommended
tracks

Figure 1: The Overall Framework of This Project.

3.1 Problem Definition

Formally, the goal of this project is as follows. Suppose we have
a dataset containing a set of n users U = {uy, ug, ...,u,} and a set
of m songs S = {s1, 82, ..., Sm }. Each user (u;, for example) also has
a set of songs they listened to, which we denote as Sy,,. Let u4 be
the active user (the user we want to recommend songs to) and N
be the number of songs to recommend. We want to find a set of N
elements I, C I such that u,; would like them the most but has not
reacted to them (as shown by the dataset).

3.2 Processing the Data

For this project, the data will be collected from the Echo Nest Taste
Profile Subset, which provides play counts of more than 300,000
users for approximately 1 million songs [12]. Traditionally, the data
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is represented using a m X n matrix, where m is the number of songs,
and n is the number of users, for example,

Uy Uz ... Up
ss 1 0 ... 0
s, 0 1 ... 0
sm 1 1 ... 1

The value 1 at row u; and column s; means that user u; has listened
to the song s;. In contrast, 0 means that the user has not listened to
the song.

However, as noted in 2.1, this matrix is most likely sparse, which
is not space-efficient. In fact, on this specific dataset, only 1.23% of
the components are non-zeroes. To address this problem, this paper
represents the dataset as a hash table that maps each user to the set
of songs they listened to. Suppose ni, na, ..., n, are the numbers of
songs users ui, Uz, ...Up react to, respectively. Then, the table is as
follows:

up: {Sun?sulgv oo Sy, },

uz: {suzl’suzza oo Sy, 1

Un : {sunl,sunz, oo Sy, b

Using this representation, one can still determine the values of parts
of the matrix if necessary. For instance, if we want to get all the
values of a column u;, then we can simply get non-zero values of
the column from the key u; of the table and fill the rest with zeroes.

3.3 Implementing the Collaborative Filtering

Algorithm
User X Users similar to X Recommended
. tracks
eS8 8S
|__Find similar users Y- & Make recommendations,

- Y ¥ W)

' o0 0 00

' oo e

—-—

Dataset

Figure 2: Procedure the collaborative filtering algorithm for
music tracks in this proposal.

The overall implementation of the collaborative algorithm is
given in figure 2. The collaborative filtering algorithm will be im-
plemented as a function f. The function takes in the dataset d, a
user ugq, a positive integer N and returns an list that contains N
songs that best match u,’s interest. This is done in two steps.

First, f determines the users who are similar to u,. This can be
done using a iterative process: for each user u; that is not ug, if u;
and u, are similar, then add u; to the list of similar users.

Having produced a list of similar users, recommendations can
then be generated for u, from music tracks that the a specific
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proportion of similar users have listened to but u, has not. For
instance, suppose we have

Ug U2 U3
st 1 1 1
) 1 1 1
s3 1 1 1
sg 1 1 1
s5 0 1 1

The algorithm in this case may suggest that u,, uz, and u3 are
similar (since they all listen to s1, s2, 53, s4), and recommend track
s5, which has been listened to by both uy and u3. We define a
hyperparameter 7 to represents the proportion of similar users that
must have listened to a song for that song to be recommended. For
example, if 7 = 0.5, then the algorithm recommend songs that at
least half of the similar users have listened to.

3.4 Determining the Similarity Between Two
Users

One critical part of the algorithm is being able to determine if
two users are similar. To do this, this paper consider users as m-
dimensional vectors, where m is the total number of songs in the
dataset. With this representation, the similarity of two users, u;
and u; can be determined by the cosine of the angle between the
corresponding vectors:

- U
N[l 1
This is one of the standard techniques for calculating similarity in
collaborative filtering algorithms [14]. With the table representation
proposed in this paper, the dot product of i; and i} can be calculated
by finding the components in which both vectors have non-zero
values, then sum up the products of the corresponding values. This
works because the components with zero values do not affect the
dot product. The strategy of only considering non-zero values is
also used to determine the magnitude of each vector using the table
representation.

We define a parameter 6 to indicate the largest value the angle
between #; and i can have for u;, u; to be considered similar. In
evaluation, we will test the model with different values of 8 and
analyze the results.

cos(if ) =

3.5 Testing and Evaluation

In this section we provide a scheme to evaluate the model in this
paper. Given a user u,, we retain k components of the vector g,
where k is a positive integer less than m, and set the remaining
m — k components to 0. We can assume that uy has the form

S1 real value
sy real value

s real value

Sk+1 0
Sk+2 0
Sm 0
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Then, we apply the collaborative filtering algorithm to generate
recommendations for u,. To prevent the model from producing too
many recommendations, we set the maximum number of recom-
mendations to be 10k, and the songs chosen are the most frequent
songs among the list of similar users. The components that were
set to be 0 are now compared with the corresponding real data.
To assess the performance of the model, we collect the following
information:

o Precision: the number of songs which were hidden that are in
the list of recommendations out of all recommended songs,
and

e Recall: the number of songs which were hidden that are in
the list of recommendations out of all hidden songs.

These two measurements will be used to assess the accuracy of
the model. To assess its speed, we measure the average amount of
time it takes the model to generate recommendations for a user.

3.6 Methods to Improve Efficiency

As noted by Linden et al. [11], one major challenge of the iterative
collaborative filtering algorithm is its efficiency. The collaborative
filtering algorithm works by iteratively finding users similar to the
given user. Since there are n users, represented as m-dimensional
vectors, the overall time complexity of the model is O(mn). Thus, it
does not scale well as the amount of data grows large. The repre-
sentation presented in section 3.2 improves this runtime since for
each user, only a small subset of songs is considered. This section
introduces two methods that are used to reduce the runtime.

a. Randomly select a subset of the dataset. This method
select a fixed-size subset of the dataset. The subset will be
generated at random in order not to create bias in the data.
The subset-size parameter will be determined from exper-
iments to determine whether collaborative filtering model
can run within a reasonable amount of time without decreas-
ing the accuracy rate by a significant amount.

b. Halt after finding enough similar users. This method re-
duces the running time by stopping once the number of sim-
ilar users found is sufficient to generate recommendations.
In the case where the desired amount cannot be reached, we
use a break point after having considered a certain amount
of users and use the list of similar users gathered so far to
generate recommendations. Similar to (a), different values
for the sufficient number of similar users and the number of
users for the break point will be experimented so that the run
time of the algorithm and the accuracy rate are reasonable.

4 RESULTS/EVALUATION

We first evaluate the model with different values for 7 and 6, as
described in section 3.3 and 3.4, respectively. We pick values for 7
from the set

{0.1,0.2,0.3,0.4,0.5}

and 6 from the set
{90°,84.3°,78.6°,72.5°,66.4°, 60°}.

The rationale behind selecting these values is that experiments
show with 7 < 0.1, the model recommends virtually every song in
the dataset, while 7 > 0.5 does not produce any recommendation
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at all. Similarly, only values for the angle 6 between 60° and 90°
produces a reasonable number of recommendations. The recorded
precision and recall rates for all combinations of 7 and 6 are shown
in table 1 and table 2, respectively.

Table 1: Precision rates for different combinations of 7 and

0

90° 84.3° 78.6° 72.5° 66.4° 60°

0.1 0.0072 | 0.0212 | 0.0298 | 0.0413 | 0.0769 | 0.0787
0.2 0.0072 | 0.0268 | 0.0338 | 0.0335 | 0.0459 | 0.0815
0.3 0.0084 | 0.0260 | 0.0302 | 0.0451 | 0.0658 | 0.0600
0.4 0.0096 | 0.0180 | 0.0337 | 0.0409 | 0.0308 | 0.0200
0.5 0.0076 | 0.0256 | 0.0237 | 0.0392 | 0.0362 | 0.0400

Table 2: Recall rates for different combinations of 7 and 6

. 90° | 84.3° | 78.6° | 72.5° | 66.4° | 60°

0.1 0.12 | 0.29 0.22 0.17 0.04 0.04
0.2 0.12 | 0.31 0.26 0.16 0.11 0.07
0.3 0.12 | 0.33 0.24 0.15 0.11 0.00
0.4 0.14 | 0.33 0.24 0.18 0.07 0.00
0.5 0.16 | 0.26 0.17 0.08 0.08 0.04

As 0 = 84.3° and r = 0.4 give the highest recall rate for the
model, We use these values for the next step, which is to test the
parameters in section 3.6. Denote s as the proportion of the gener-
ated subset compared to the full dataset, and m as the number of
similar users threshold to halt. The execution time of different val-
ues for s and m are shown in table 3. The corresponding precision
and recall rates of these tests are also documented in table 4 and 5,
respectively.

Table 3: Execution time (in seconds) for different combina-
tions of s and m

s & 500 1000 2500 | 5000
0.3 1.8247 | 1.938 2.001 | 2.0460
0.4 2.194 2.5218 | 2.590 | 2.628
0.5 2.760 3.0783 | 3.208 | 3.297

Table 4: Precision rates for different combinations of s and
m

s m 500 1000 2500 5000

0.3 0.0336 | 0.0336 | 0.0344 | 0.0312
0.4 0.0344 | 0.0392 | 0.0318 | 0.0296
0.5 0.0314 | 0.0351 | 0.0320 | 0.0320
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Table 5: Recall rates for different combinations of s and m

s " 500 1000 | 2500 | 5000
0.3 0.365 | 0.365 | 0.374 | 0.339
0.4 0.373 | 0.426 | 0.339 | 0.322
0.5 0.339 | 0.374 | 0.348 | 0.348

5 DISCUSSION

From table 1, different combinations of 7 and 6 result in precision
rates ranging from 0.0072 to 0.0815, with the highest value occurring
at 7 = 0.2 and 6 = 60°. An explanation for this is that these values
correspond to the tighter constraints in the hyperparameter space;
therefore we get higher precision. However, this combination gives
thus a recall rate of only 0.07, which is significantly worse than
0.33, the highest value (at 7 = 0.4 and 6 = 84.3°.

Another observation from the experiments is that the highest
precision rate being less than 10% means that less than 10% of the
originally hidden songs came up in the recommendations. This
might not necessarily reflect the quality of the model, as its role is
to find songs that the active user might like but do not know about.

The schemes proposed in section 3.6 also result in an improve-
ment in runtime. As mentioned in section 4, the average runtime
before deploying these methods is 5.81 seconds, whereas the run-
times documented in table 3 range from 1.83 to 3.3 seconds. Lower
values of s and m further reduces the runtime. However, we also
need the precision and recall rates for these experiments in order
to conclude whether this improvement also has a large impact on
the accuracy of the model. Interestingly, at s = 0.4 and m = 1000,
we attain the highest values for precision and recall rates at 0.0392
and 0.426, respectively. These values are both higher than the corre-
sponding values in table 1 and 2. The results of these experiments
show that the methods of section 3.6 both reduce the overall run-
time and retain the accuracy of the model.

6 RELATED WORK

In this section, we described Linden et al’s collaborative filtering
algorithm using an item-based method as opposed to a user-based
approach proposed in this paper. We then compare the method
with the approaches discussed in sections 2.2, 2.3 and with the
collaborative filtering implementation of this paper in section 3.

Linden et al. [11]’s method was used for generating recommen-
dation by Amazon. The approach is different from other methods
in that rather than finding like-minded users, Linden et al. devel-
oped an algorithm that linked a user’s purchased or rated items
to other similar items. The algorithm iteratively generates a table
of similarity values between a products using the cosine method.
Using this table, it can then quickly generates recommendations to
users based on items they have rated or purchased.

The major factor that set the method of Linden et al. apart from
the other implementations of collaborative filtering as well as ap-
proaches discussed in previous sections is its computation time. In
the traditional collaborative filtering method, generating recom-
mendations takes O(mn) time where m is the number of users and n
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is the number of products. In Linden et al’s method, however, creat-
ing the item-to-item similarity table takes O(mn), but this work can
be done offline. Once the table is created, making recommendations
to user can be quickly done.

An analysis from Schafer et. al. [16] noted that this method saved
memory and computation time because it took advantage of the
fact that only a subset of the dataset was needed to generate recom-
mendations. While clustering methods could also be efficient, their
recommendation quality were relatively low. On the other hand,
using a traditional approach may result in good recommendations,
but their inefficiency made it difficult to implement in practice.

Contrary to Linden et al.s approach, the collaborative filtering
algorithm implementation is based on the similarities between
users, not items. It is based on the traditional method, but makes
use of the space and runtime optimization methods discussed in
sections 3.2 and 3.6.

7 FUTURE WORK

An immediate extension of this project is to explore other methods
that manipulate the dataset to reduce the runtime. Such methods
would need to consider properties of the dataset so that the collab-
orative filtering function can make less comparison without losing
accuracy.

Another extension is to compare the performance of the work
proposed in this model with other recommendation techniques
other than collaborative filtering.
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