
In this work we implement two methods that are used to reduce the
runtime.
a. Randomly select a subset of the dataset. This method select a fixed-

size subset of the dataset, which is generated at random. The
subset-size parameter is determined from experiments to see
whether our model can run within a reasonable amount of time
without decreasing the accuracy rate by a significant amount.

b. Halt after finding enough similar users. The execution is stopped
once the number of similar users found is sufficient to generate
recommendations.

Methods to Improve Runtime

Denote s as the proportion of the generated subset compared to the full
dataset, and m as the number of similar users threshold to halt. We use
θ = 84.3° and τ = 0.4 as these values give the best recall rate in the
previous step. The execution time of different values for s and m are
shown in table 3.

We also record the precision and recall rates for these test runs. The
results are documented in the following graph.

The average runtime before deploying these methods is 5.81 seconds,
whereas the runtimes documented in table 3 range from 1.83 to 3.3
seconds. Lower values of s and m further reduces the runtime.
Furthermore, the precision and recall rates attained using these
methods are both slightly higher than the corresponding values in
tables 1 and 2. The results of these experiments show that the runtime-
improvement methods both reduce the overall runtime
and retain the accuracy of the model.

From the results of this project, for related future work, we would like to
explore the hypothesis that the best accuracy of this model is attained
after finding a certain number of similar users. We would also want to
explore other methods which manipulate the dataset to reduce the
runtime. Such methods would need to consider properties of the
dataset so that the collaborative filtering function can make less
comparison without losing accuracy.

Experiment Results and Conclusion

In the last 25 years, the use of recommender systems has expanded
rapidly. These systems, designed to produce recommendations
that match users’ interests, are incorporated into areas such
as news, entertainment, and research. One common technique
used by recommender systems is collaborative filtering, which
produces recommendations for a user based on choices of users
with similar preferences. This work describes a recommender
system for music tracks using collaborative filtering.

Collaborative filtering is widely used; however, the method does not
scale well with large datasets. It is important to build a recommender
system using collaborative filtering that not only is accurate but also
runs efficiently. In this project, I attempt to build a recommendation
systems for music tracks using collaborative filtering with two
optimization methods, dataset rescaling and automatic halting. These
methods will be built and tested with different parameters to address
the performance issue while retaining an acceptable accuracy.
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1. Collaborative Filtering
Collaborative filtering provides recommendations for a target user by
estimating the utility of different items based on the habits or ratings of
other users. The advantage of this technique is that the behavior of a
user can generally be predicted from users who are similar. For
example, suppose we have a user-song table as shown below, where 1
denotes a user has listened to a song, and 0 if they have not:

The algorithm in this case may determine that ua, u2, and u3 are
similar (since they all listen to s1, s2, s3, s4), and recommend track
s5, which has been listened to by both u2 and u3.

2. Types of Ratings
Determining the similarity of different users requires recommender
systems to attain a numerical value for every user-item pair which
represents the user’s rating of the item. There are two types of user
ratings that can be used by recommender systems, explicit rating and
implicit rating.

Background

Explicit rating Implicit rating

• Users explicitly provides feedback for

different items on a numerical scale.

• i.e. from 1 to 5 where 5 means “strongly like”

and 1 means “strongly dislike”)

• Ratings are provided directly by users so is

generally considered a good rating system.

• However, it is not practical for users to

provide ratings for every item, so can make

use of only rated items or derive implicit

feedback from the rest.

• Ratings are not provided by users, but are

predicted based on users’ activity.

• For instance, if someone has not provided a

rating for a certain song but has listened to it

more than 20 times, she will likely give the

song a high rating.

Methodology

1. Processing the Data
In this project, the data will be collected from the Echo Nest Taste
Profile Subset, which provides play counts of more than 300,000 users
for approximately 1 million songs. Traditionally, the data is represented
as a 2-dimensional matrix, but this is not space-efficient. Instead, we
represents the dataset as a hash table that maps each user to the set of
songs they listened to. This works because in practice the most active
users of large commercial websites consume less than 1% of the
contents.

2. Implementing the Collaborative Filtering Algorithm

The collaborative filtering algorithm will be implemented as a function f.
The function takes in the dataset d, a user ua, a positive integer N and
returns an list that contains N songs that best match ua’s interest. This is
done in two steps.

First, f determines the users who are similar to ua. This can be done
using a iterative process: for each user ui that is not ua, if ui and ua are
similar, then add ui to the list of similar users.

Having produced a list of similar users, recommendations can then be
generated for ua from music tracks that the a specific proportion of
similar users have listened to but ua has not.

3. Determining the Similarity Between Two Users
To determine the similarity of users, this work consider users as m-
dimensional vectors, where m is the total number of songs in the
dataset. With this representation, the similarity of two users, ui and uj

can be determined by the cosine of the angle between the
corresponding vectors:

We define a parameter θ to indicate the largest value the angle
between ui and uj can have for them to be considered similar. In
evaluation, we test the model to determine the best value for θ.

Figure1. Overall framework of the project

Figure 2. Overall framework of the project

Given a user ua, we retain k components of the vector ua, where k is a
positive integer less than m, and set the remaining m − k components to
0. We can assume that ua has the form

Then, we apply the collaborative filtering algorithm to generate
recommendations for ua. To prevent the model from producing too
many recommendations, we set the maximum number of
recommendations to be 10k, and the songs chosen are the most
frequent songs among the list of similar users. The components that
were set to be 0 are now compared with the corresponding real data.

The model is assessed based on the runtime as well as the following
measures:
• Precision: the number of songs which were hidden that are in the list

of recommendations out of all recommended songs, and
• Recall: the number of songs which were hidden that are in the list of

recommendations out of all hidden songs.
Let τ represent the proportion of similar users that must have listened to
a song for that song to be recommended, and let θ be the largest value
the angle between ui and uj can have for them to be considered similar.
The following graph shows precision and recall rates, respectively, for
different combinations of τ and θ.
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Table 3. Execution time (in seconds) for different combinations of s and m
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