
A Proposal of contributing to an open source project Solo5
Yanzhi Li

yli16@earlham.edu
Computer Science Department

Earlham College
Richmond, Indiana

KEYWORDS
Linux,Library Operating System,Operating Systems, Unikernels

1 ABSTRACT
Unikernel is a newly developed technology that will benefit cloud
computing, system optimization, high performance computing, etc.
Currently, its development is still preliminary while the problems of
unikernel are insufficient. With more researchers involved, uniker-
nels will become the next stage of system virtualization, or even
the next evolution of operating systems. This project aims to do
research in an idea of running unikernels as processes on Linux and
proposes to solve issues of the corresponding open source project.

2 INTRODUCTION
The first unikernel-like systems were designed in late 1990s. How-
ever, because of the hardware requirement and the low demand of
their potential, unikernels were paused and faded from researchers’
sight. The technology behind unikernels has been developed over
the last five years. Unlike a complete operating system such as
Linux, which has an expanded kernel to support a wide range of
functionality, a unikernel is stripped off all the unnecessary parts. In
other word, it is a specialized, executable image that is deployed di-
rectly on hardware and linked with target application[14]. A similar
idea of a lightweight runtime environment is the container which
is now in great demand. However, Filipe et al. [12] pointed out that
containers offer weaker isolation than VMs. Thus, the unikernel
seems to become the next stage of system virtualization. More-
over, the idea of implementing unikernels on Linux has become a
major branch of unikernel studies. Since this is newly-developed
technology, researchers have not found many problems on this
topic.

Dan et al. created an open source project called Solo5, which is
a general sandboxed execution environment suitable for running
applications built using various unikernels[16]. Their research pro-
vides a practical and accessible way to implement unikernels and
utilize their advantages. I am interested in system virtualization
and motivated to find a general methods of improving application
performance. Unikernels seem to be the best fit. This proposal aims
to contribute to the Solo5 open source project. Currently its goal
is to solve three issues of the project including: Proper support for
cross-compiling, Better error reporting in the ELF loader, Sandbox
elftool. The current three issuses where chosen randomly and may
change depending on my further investigation of the Solo5 source
code.

This paper includes the following sections and presents them in
this order: Abstract, Introduction, Related Work, Design, Budget,
Timeline, and References.

3 RELATEDWORK
The related work section will be divided into two parts. The first
part introduces the concept of unikernels, why they are important
and what benefits they have. This part will also talk about some
implementations of the unikernels. The second part introduces
some ideas associating unikernels with the Linux OS.

3.1 What are unikernels
The work in category concerns primarily with unikernel as a sep-
arate micro system from a complete operating system. Lankes et
al. viewed unikernels as a totally independent system image to be
used for extreme scale computing[8]. Projects under this category
are application oriented. In other words, their unikernels care only
about how to be applicable.

Unikernels are machine images constructed by using library
operating systems. They are composed of the minimal set of li-
braries which correspond to the OS constructs required for some
specific applications to run. In other words,unikernels strip away
everything that are unnecessary. They are specifically designed for
certain applications and do not provide any other options. Besides,
unikernels can directly run on the, virtual or real, hardware without
an intervening operating system[16]. Since they only use a small
set of the resources required by a complete operating system, they
are lightweight and platform-independent.

The idea of such a micro system came from the demand for
an improvement of the traditional operating system virtualization.
Anil and David in their paper stated that the traditional operat-
ing system virtualization,while being very useful,is built upon an
already layered software stack and thus adds more burden to the
overall system[11]. They pointed out a typical virtual machine that
contains a full operating system image was reasonable in several
years ago because high cost of building such a system, i.e., a single
system to performmultiple tasks was desirable. However,nowadays
most deployed VMs ultimately perform a single function such as
acting as a database orWeb server. The demand for a single-purpose
virtual machine is a reflection of the inexpensive cost of building
new virtual computers. Thus come the unikernels. The new technol-
ogy is capable of delivering: system security, small footprints,high
application optimization, near instant boot times, good resource
utilization. Unikernels could dramatically improve the performance
of the target application. A similar purposed technology of light-
weight virtualization is the container, which is now widely used
in many fields such as cloud computing. Google also ran most of
its services in containers. However, Filipe et al expressed the con-
cerns for the security problem of the containers in their paper[12].
The API that a container use to interact with the host OS is funda-
mentally difficult to secure, even with many isolation mechanisms



Yanzhi Li

introduced in the past few years. In addition,containers are vulner-
able to DoS attack.Thus they proposed to replace containers with
unikernels, which provides high isolation as a complete VM and
no less efficiency.

The unikernels introduced in this section are application/function
oriented. In other words, they are designed for some particular ap-
plications or providing some specific functionalities. According
to Raza et al, there are two approaches of creating a new uniker-
nel: a clean slate approach where the kernel is largely built from
scratch, and a strip down approach where people stripped an an
existing kernel codebase of functionality that are unnecessary for
the unikernel. One of the most famous unikernel implementation
exploring the clean-slate design space is the MirageOS, which is
extremely specialized and limited to OCaml-based applications[11].
Meanwhile, strip-down unikernels are better at porting software by
preserving the general-purpose libraries and interfaces of a legacy
kernel codebase. One representation of this type is the RumpRun
unikernel which contains a heavily-reduced version of NetBSD[14].

In addition, unikernel communities have now developed many
different unikernel implementations for other languages, some of
which are able to support common applications and runtimes like
nginx, redis, Node.js express, Python, etc[16]. For example, HalVM8
is an unikernel based on the famously pure and lazy Haskell lan-
guage [11].

With lightweight characteristics and strong isolation, unikernels
have substantial advantages for a wide class of applications. They
are well suited for microservices, network function virtualization ,
and High-performance Computing.

3.2 Unikernels on Linux
Rather than designing a new unikernel for a specific application,
work under this category focus on how to import current unikernel
implementation to the Linux environment. Some papers proposed
the idea of incorporating unikernels into current Operating System
Linux and making them compatible with Linux applications. Raza
et al argued that unikernels’ advantages represent the next natural
evolution for Linux[14]. While Pierre et al pointed out that the
barrier to their widespread adoption is the difficulty/impossibility
to port existing applications to current unikernels, they created an
unikernel HermiTux which is the first unikernel providing binary-
compatibility with Linux applications [11]. These people aimed
to make unikernels backward compatible so that the unikernel
could be more acceptable and more people will be involved in its
development.

Raza et al. demonstrated that Linux can be turned into a unikernel
successfully[14]. Pierre et al. built HermiTux , a unikernel that
runs native Linux executables by providing binary compatibility,
relieving application programmers from the effort of porting their
software[11]. Dan et al. used a different approach by implementing
unikernels as processes[16]. They all showed the possibility of
merging the new technology with the complete operating system.

4 DESIGN
4.1 Solo5 Structure
Dan et al. implemented unikernels as processes on Linux[16]. Figure
1 shows an overview of unikernels as processes. They created a

tender process, which has twomain tasks: setup and “exit” handling.
They also built a prototype system, called nabla, to demonstrate
unikernels running as processes and implemented nabla as part of
the Solo5 unikernel ecosystem, as shown in Figure 2.

Figure 1: Unikernel isolation using a tender processwith sec-
comp technology[16]

Figure 2: The Solo5 unikernel ecosystem. Nabla is imple-
mented as a new Solo5 binding and a new backend for the
ukvm monitor[16]

4.2 Project Modules
The project consists of four steps as shown in Figure 3. First, I will
do some prelimary work to create an environment for building
Solo5. Second, I will pull from the Solo5 repository and build it on
the VM. Also, I will replicate Dan et al.’s work in the paper. Third,
I will choose three issues to solve or optimize the source code
based on my investigation. Finally, I will conduct experiments on
two applications’ performance and I will communicate with other
contributors to receive feedback on my project. I will evaluate my
results according to feedback.



A Proposal of contributing to an open source project Solo5

Figure 3: Project Framework

4.3 Project Issues
I am building Solo5 on my VM and replicating Dan et al.’s work in
their paper[16]. The challenge of each issue is still unknown. The
current three issues are chosen randomly and could be possibly out
of the scope of mine. As a result, they may change according to my
further investigation of the source code.

4.4 Preliminary Work
To build Solo5, I created a new Debian virtual machine on Virtu-
alBox. Besides, configurations need to be done and some software
required by Solo5 need to be installed on the VM. These include:

• Git Software
• Network Configuration to enable internet access
• A C11 compiler; recent versions of GCC and clang are sup-
ported

• GNU make
• Full host system headers (on Linux, kernel headers are not
always installed by default)

• Pkg-config and libseccomp >= 2.3.3 are required
• Makefile Configuration

4.5 Experiments Design
The experiments for the project results consists of two parts. First,
after commit changes to the Github, I will receive feedback from
other contributors, which I will use to evaluate my project. Sec-
ond, I will use the unikernels to run two applications, Atlas and
Mothur, and test whether unikernels could improve their perfor-
mance. Based on observations, I will discuss with other contributors
to evaluate my work.

5 BUDGET
There is currently no expense for this project.

6 TIMELINE
Table 1 shows the timeline of the project.

Jan 15th - Feb 1st Learn about the open source code

Feb 2nd -Feb 16th Evaluate the difficulty of each issues

Feb 16th- Mar 1st Find three issues that are feasible

Mar 1st -Mar 14th Build a Linux VM and install Solo5

Mar 14 -Mar 28th Find solutions to the issues

Mar 25th -April Solve the issues and make report.

April Add myself to the contributor list

Table 1: Timeline.

ACKNOWLEDGEMENT
I would like to thank Prof.Xunfei to for her help and advice for my
project and Prof. Charlie for his suggestions on unikernels.

REFERENCES
[1] Bob Duncan, Andreas Happe, and Alfred Bratterud. 2016. Enterprise IoT Security

and Scalability: How Unikernels Can Improve the Status Quo. In Proceedings
of the 9th International Conference on Utility and Cloud Computing (UCC ’16).
ACM, New York, NY, USA, 292–297. https://doi.org/10.1145/2996890.3007875
event-place: Shanghai, China.

[2] Henrique Fingler, Amogh Akshintala, and Christopher J. Rossbach. 2019. USETL:
Unikernels for Serverless Extract Transform and Load Why Should You Settle for
Less?. In Proceedings of the 10th ACM SIGOPS Asia-Pacific Workshop on Systems
(APSys ’19). ACM, New York, NY, USA, 23–30. https://doi.org/10.1145/3343737.
3343750 event-place: Hangzhou, China.

[3] Takayuki Imada. 2018. MirageOS Unikernel with Network Acceleration for IoT
Cloud Environments. In Proceedings of the 2018 2Nd International Conference on
Cloud and Big Data Computing (ICCBDC’18). ACM, New York, NY, USA, 1–5.
https://doi.org/10.1145/3264560.3264561 event-place: Barcelona, Spain.

[4] Antti Kantee. 2015. OPINION The Rise and Fall of the Operating System. 40, 5
(2015), 4.

[5] Ricardo Koller and Dan Williams. 2017. Will Serverless End the Dominance
of Linux in the Cloud?. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems (HotOS ’17). ACM, New York, NY, USA, 169–173. https:
//doi.org/10.1145/3102980.3103008 event-place: Whistler, BC, Canada.

[6] Simon Kuenzer, Anton Ivanov, Filipe Manco, Jose Mendes, Yuri Volchkov, Florian
Schmidt, Kenichi Yasukata, Michio Honda, and Felipe Huici. 2017. Unikernels
Everywhere: The Case for Elastic CDNs. In Proceedings of the 13th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
’17). ACM, New York, NY, USA, 15–29. https://doi.org/10.1145/3050748.3050757
event-place: Xi’an, China.

[7] S. Kuenzer, S. Santhanam, Y. Volchkov, F. Schmidt, F. Huici, Joel Nider, Mike
Rapoport, and Costin Lupu. 2019. Unleashing the Power of Unikernels with
Unikraft. In Proceedings of the 12th ACM International Conference on Systems and
Storage (SYSTOR ’19). ACM, New York, NY, USA, 195–195. https://doi.org/10.
1145/3319647.3325856 event-place: Haifa, Israel.

[8] Stefan Lankes, Simon Pickartz, and Jens Breitbart. 2016. HermitCore: A Unikernel
for Extreme Scale Computing. In Proceedings of the 6th International Workshop on
Runtime and Operating Systems for Supercomputers (ROSS ’16). ACM, New York,
NY, USA, 4:1–4:8. https://doi.org/10.1145/2931088.2931093 event-place: Kyoto,
Japan.

[9] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire,
David Sheets, Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon

https://doi.org/10.1145/2996890.3007875
https://doi.org/10.1145/3343737.3343750
https://doi.org/10.1145/3343737.3343750
https://doi.org/10.1145/3264560.3264561
https://doi.org/10.1145/3102980.3103008
https://doi.org/10.1145/3102980.3103008
https://doi.org/10.1145/3050748.3050757
https://doi.org/10.1145/3319647.3325856
https://doi.org/10.1145/3319647.3325856
https://doi.org/10.1145/2931088.2931093


Yanzhi Li

Ludlam, Jon Crowcroft, and Ian Leslie. [n.d.]. Jitsu: Just-In-Time Summoning of
Unikernels. ([n. d.]), 15.

[10] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Bal-
raj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
2013. Unikernels: Library Operating Systems for the Cloud. In Proceedings of
the Eighteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS ’13). ACM, New York, NY, USA,
461–472. https://doi.org/10.1145/2451116.2451167 event-place: Houston, Texas,
USA.

[11] Anil Madhavapeddy and David J. Scott. 2014. Unikernels: The Rise of the Virtual
Library Operating System. Commun. ACM 57, 1 (Jan. 2014), 61–69. https:
//doi.org/10.1145/2541883.2541895

[12] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit
Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter
(and Safer) Than Your Container. In Proceedings of the 26th Symposium on
Operating Systems Principles (SOSP ’17). ACM, New York, NY, USA, 218–233.
https://doi.org/10.1145/3132747.3132763 event-place: Shanghai, China.

[13] Pierre Olivier, Daniel Chiba, Stefan Lankes, Changwoo Min, and Binoy Ravin-
dran. 2019. A Binary-compatible Unikernel. In Proceedings of the 15th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE
2019). ACM, New York, NY, USA, 59–73. https://doi.org/10.1145/3313808.3313817
event-place: Providence, RI, USA.

[14] Ali Raza, Parul Sohal, James Cadden, Jonathan Appavoo, Ulrich Drepper, Richard
Jones, Orran Krieger, Renato Mancuso, and Larry Woodman. 2019. Unikernels:
The Next Stage of Linux’s Dominance. In Proceedings of the Workshop on Hot
Topics in Operating Systems (HotOS ’19). ACM, New York, NY, USA, 7–13. https:
//doi.org/10.1145/3317550.3321445 event-place: Bertinoro, Italy.

[15] Florian Schmidt. 2017. Uniprof: A Unikernel Stack Profiler. In Proceedings of
the SIGCOMM Posters and Demos (SIGCOMM Posters and Demos ’17). ACM, New
York, NY, USA, 31–33. https://doi.org/10.1145/3123878.3131976 event-place: Los
Angeles, CA, USA.

[16] Dan Williams, Ricardo Koller, Martin Lucina, and Nikhil Prakash. 2018. Uniker-
nels As Processes. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC ’18). ACM, New York, NY, USA, 199–211. https://doi.org/10.1145/3267809.
3267845 event-place: Carlsbad, CA, USA.

https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2541883.2541895
https://doi.org/10.1145/2541883.2541895
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/3313808.3313817
https://doi.org/10.1145/3317550.3321445
https://doi.org/10.1145/3317550.3321445
https://doi.org/10.1145/3123878.3131976
https://doi.org/10.1145/3267809.3267845
https://doi.org/10.1145/3267809.3267845

	1 Abstract
	2 Introduction
	3 Related Work
	3.1 What are unikernels
	3.2 Unikernels on Linux

	4 Design
	4.1 Solo5 Structure
	4.2 Project Modules
	4.3 Project Issues
	4.4 Preliminary Work
	4.5 Experiments Design

	5 Budget
	6 Timeline 
	References

