
A User Interface Configurable via JSON for Augmented and
Virtual Reality Applications

Laurence Ruberl
lcfruberl@gmail.com

Earlham College Department of Computer Science
Richmond, Indiana

ABSTRACT
A user interface that can be defined using JSON does not currently
appear to exist for Augmented Reality applications. This project
lays the groundwork to correct that and allow for all kinds of appli-
cations to leverage Augmented Reality as a system however people
see fit. We used mostly open source hardware and software to
achieve that goal, using the Project NorthStar headset, Leap Motion
sensor, and associated software packages to make an interface that
can be defined in JSON and instantly used in an application.

ACM Reference Format:
Laurence Ruberl. 2020. A User Interface Configurable via JSON for Aug-
mented and Virtual Reality Applications. In Proceedings of Earlham Col-
lege Computer Science Senior Capstone. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
This paper will cover the background and design of a user interface
for Virtual and Augmented Reality to fill in a gap in existing work
on User Interfaces in those fields. We will discuss a selection of
what has already been done in the field of Augmented and Virtual
reality before discussing our implementation of such an interface.

The primary contribution of this paper is the groundwork for
a User Interface that is configurable exclusively in JSON and is
purpose-built for Augmented and Virtual Reality applications[13].
This groundwork overcomes some of the hurdles that might pre-
vent a developer from making their own automatically generated
interface by automating the steps necessary to make an interface
manually.

2 BACKGROUND AND RELATEDWORK
Most interfaces for any system or program are designed specifically
for that singular purpose. For example, the Heads Up Display (HUD)
for a video game is designed only for that specific game. This
concept also extends to Augmented Reality. As an example, the
interface for the Windows Home menu in Windows Mixed Reality
headsets is only used and accessible by that one program. It would
make designing some applications, as well as porting over existing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Earlham College Computer Science Senior Capstone, Richmond, IN,
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

non-Augmented Reality applications, much easier if there was a
unified interface that could be quickly configured by a developer.

2.1 Previous Research
There is a litany of work related to designing interactions for Aug-
mented Reality devices.Most of the earliest work utilizes application-
specific hardware with tracking markers to keep track of position-
ing. This includes the work of Billinghurst and Grasset in 2005[2] in
which they used a purpose-built tracking mat and physical "handle"
as their interface and tracking mechanism. More recent work deals
with hand tracking in relation to objects that appear to be in the
same space as the user, similar to this project. An example is the
work of Lee et al in 2018[8] in which they endeavored to determine
the best method for a user to interact with digital windows. Some
work deals with how to classify Augmented Reality systems, an
idea that is useful to keep in mind as one works on such systems[4].
There is also work to catalogue and address the challenges of Aug-
mented Reality applications, such as security concerns like those
raised by Kiron Lebeck et al[7].

There is also a body of work dedicated to how to interact with
Augmented Reality interfaces. Some research works with similar
technology to the Leap Motion Sensor, specifically interacting with
two hands[12][8].

2.2 Applications of Augmented and Virtual
Reality in Other Fields

One of the fields that has attempted to integrate Augmented Reality
into itself is that of Theatre. Most research has been devoted to how
Augmented Reality can be used to enrich the audience experience
or the artistic vision[1][5][14][3]. There is very little research to be
found regarding using Augmented Reality in the management of
Theatre, which is a gap this project hopes to inspire the filling of.
One way in which something like this could be used is for Stage
Managers during a show. Normally, they would have to look away
from the stage to follow along in their script, but with an AR headset
powered by an interface like the one detailed in this paper, they
would only need to move their eyes to one side rather than their
whole head.

3 DESIGN AND IMPLEMENTATION
3.1 Hardware
This project was designed and implemented for the Project North-
Star open source Augmented Reality headset started by the com-
pany formerly known as Leap Motion (now UltraLeap). The headset
is primarily 3d-printed and uses custom electronics for the display
driver. It projects objects into the user’s vision by rendering them

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Earlham College Computer Science Senior Capstone, Richmond, IN,
Laurence Ruberl

Figure 1: A rendering of the Project NorthStar Headset[11]

on two commercially available screens and then bouncing those im-
ages off of a pair of custom semi-reflective lenses into the wearer’s
eyes. This allows the user to see their real-world surrounds while
having the digital objects overlaid into their field of vision. The
headset displays are powered directly off of the user’s computer
and graphics card, utilizing DisplayPort for a graphics adapter and
USB 3.0 for power. Hand tracking for the headset is provided by
the proprietary Leap Motion sensor, which uses USB 2.0, mounted
on the front of the headset[10].

Due to tracking restrictions with the NorthStar and COVID-
19 preventing access to materials to rectify them, most testing
for this project was done on a Lenovo Explorer Virtual Reality
headset. The Lenovo Explorer is a Head Mounted Display (HMD)
developed by Lenovo in cooperation with Microsoft as part of their
Windows Mixed Reality program[9]. When using the Explorer, the
Leap Motion Sensor from the NorthStar was mounted to the front
using a developer mount sold by UltraLeap.

3.2 Software
The majority of this project was created in the Unity game engine
using packages provided by the Project NorthStar development
community and UltraLeap [16]. Most pregenerated assets, such as
models for the user’s hands used during testing, also came from
those teams. We also used scripts from some of the examples pro-
vided with the Interaction Engine module. We used LitJson[6] for
JSON parsing.

3.3 Architecture
The proof of concept interface that accompanies this paper uti-
lizes a few types of interactables. When designing anything inter-
active there is a concept called interactables, meaning anything
that the user can manipulate or interact with within their digital
environment[17]. For example, a static object, like a table or a safe,
that cannot be moved would not be an interactable, while some-
thing like a coffee cup or a door would be an interactable because
the user can interact with and manipulate them. In our context,
buttons and draggables are all interactables. Panels, on the other
hand, are not interactables and are semi-static objects that hold
other objects, such as buttons or sliders, in a single place. They
all have an associated draggable that allows the user to move the
panel to another location and pin it there. If the user tries to grab

Figure 2: Architecture diagram

any other part of the panel, it will not respond to them in the same
way. Anchorables are objects that can be picked up by the user and
attached to an anchor which holds it in a specific place and enables
it to be interacted with like a button or slider.

Some UI elements can also be bound to the user’s hands. For
example, by default, a pallet with interactables that the user can
drag into the space can be displayed by taking their non-dominant
hand and facing it toward them, conjuring the objects they have
configured into the space so they can use their opposite hand to
move them into the space. The pallet is grouped into columns of
three anchors that each hold one object. More columns are added
depending on the number of objects being generated. This design is
directly based off of the work of the Leap Motion team’s examples
but was modified and expanded to include support for more than 3
objects

To customize the functionality of the different elements, the
users can place definitions in a JSON file that the program reads
from and configures the interface objects accordingly. For example,
if the user wants a panel that displays the information recorded
by a thermometer attached to their computer, they would write in
the configuration file a label for the display and where the program
should get the readout from. As another example, if the user wanted
to have a button that spawns several readouts, they would put in the
file that they want it to be a button and they’d configure the screens
in the same way as the aforementioned display. In both these cases,
once the interface program has loaded, they can interact with them
exactly as they configured and intended.

3.4 Scenes
In the Unity engine, scenes are collections of objects existing at once
alongside their associated scripts. In the words of the Unity docu-
mentation, "Think of each unique Scene file as a unique level"[15].
We used three Unity scenes: one as an initial scene to load in to,
one dedicated to a Virtual Reality setup, and one dedicated to an
Augmented Reality setup. The first scene exists as a place for the
initial loading and parsing to occur and is not seen by the player.

The second and third scenes are very similiar but exist separately
due to the differences required by the NorthStar. The Northstar

A User Interface Configurable via JSON for Augmented and Virtual Reality Applications
Earlham College Computer Science Senior Capstone, Richmond, IN,

scene contains three main cameras1, one for the left eye, one for
the right, and one to combine the two images to display in the
headset. The VR scene only has one camera . Both scenes contain
a root LeapRig object that manages everything in regards to the
Leap Motion sensor, including several sets of child objects. The
Attachment Hands objects tracks and organizes objects attached
to the User’s hands, while the Interaction Manager keeps track of
what those hands interact with. Attachment hands also contains
the anchors that the User Interface objects attach to when they are
not deployed. There are also objects to display the outlines of user’s
hands in the scene.

3.5 Interface Generation

Figure 3: A development screenshot containing (from left to
right) a user’s hand with one collapsed UI object attached to
their hand, a deployed button that adds to a text file when
pressed, and a text readout counting the number of lines in
a text file in real time.

The user interface generation is powered by a single class called
RuntimeManager. When the program is started, it reads from the
defined configuration file and loads it into an object using LitJSON.
This PreferenceObject contains information such as which scene to
load into and a list of the objects to generate into the scene. Then,
depending on what the user defines in the configuration, the class
loads into the scene built for the given type of headset. From there,
the class determines which objects are which, such as where the
Interaction Manager is and where the necessary attachment points
are before iterating through the list of objects to see what needs to
be generated.

1In this context, cameras are what a user would see looking from that specific point in
the scene.

Figure 4: A development screenshot containing a User’s
hand with a pallet of 4 objects.

For each object, the class first determines the anchor it needs to
be initially attached to. If there are no more free anchors remaining,
it will generate a new pallet of three anchors as children of the
left palm under the Attachment Hands, and shift it over a few
units so the user can see all the objects they want. Then, the class
creates a wrapper draggable object that user will use to move it,
then associates it with an anchor before determining what kind of
object should be generated. Finally, the class generates the actual
object as a child of the wrapper object, tells it what object contains
the interaction manager, and associates to the object any events
that the user defined. For example, if a user defines a button that
writes to a file when pressed, the class will create said button and
add a listener that writes the user-defined string to the specified
file. Once it is done, it keeps following the list to see if there are
anymore objects to generate and then repeats the process.

A similar process is followed for data readouts. For data readouts,
such as the readout of a thermometer attached to the computer, the
program currently assumes that it is stored in a file on the user’s
filesystem. The class creates a text object in much the same vein as
for the interactables above, however it attaches a script that will
check the given file every frame update to see if it has changed
in size. If it has, it reads the last line of the file and updates the
text object accordingly. We used the FileInfo class in C# to get file
information in order to limit the amount of input-output operations
that would need to be done to get that information otherwise.

The above processes allow the user to look at their left hand
and see a pallet of objects, pick one, drop into the space near them,
and then either get data readouts from it or interact with it as they
need.

4 RESULTS
The completed proof of concept demonstrates the feasibility of an
interface generated from a user-defined text file for VR and AR.
It automates much of the work necessary to built a UI within the
framework of Project Northstar and the Leap Motion Sensor. Our

Earlham College Computer Science Senior Capstone, Richmond, IN,
Laurence Ruberl

proof-of-concept contains two kinds of objects with the potential
for more to be added in the future.

We hope that this project inspires in some way the creation
of more applications for Augmented Reality by lowering the bar
necessary to create software for those applications. While some
work has been done on additional applications of Augmented and
Virtual reality, the field is still relatively new has has many ways it
can be expanded and we hope this paper contributes towards that.

5 FUTUREWORK
There are many ways the interface can be improved, some of which
were postponed due to the impact of the COVID-19 Pandemic sepa-
rating us from some of our equipment. Additional interactables can
be added to the interface, such as sliders or toggle switches. There
is the also the possibility of more control for the user when writing
the configuration file, such as user defined variables within events.
The ability to put multiple interactables on one panel is possible as
well, allowing for clusters of buttons or buttons below their indi-
cator. Another major improvement is the generalization of many
of the methods such that the class can be used in any application,
not just one custom made for it. This will allow future applications
that need an interface to get started relatively quickly and easily.
Another improvement that was put on hold due to COVID-19 was
the addition of a tracking mechanism to the NorthStar headset.
One can hook up a tracking system using IR LEDs attached to the
headset and tracking data from a laptop camera or webcam.

ACKNOWLEDGMENTS
Dr. David Barbella, Dr. Charles Peck, The Earlham College Depart-
ment of Computer Science, and The Project NorthStar Development
Community and Discord server.

REFERENCES
[1] Dimitrios Batras and ThomasMorisset. 2015. DOLMENS: Presence andAutonomy

in Digital Stages. Proceedings of the 2015 Virtual Reality International Conference
(2015), 1–4. https://doi.org/10.1145/2806173.2806180

[2] Mark Billinghurst and Raphael Grasset. 2005. Designing Augmented Reality In-
terfaces Physical Elements Input Interaction Metaphor Display Elements Output.
Interface (2005), 17–22. https://doi.org/10.1145/1057792.1057803

[3] Adrian David Cheok, Wang Weihua, Xubo Yang, Simon Prince, and Fong Siew
Wan. 2002. Interactive Theatre Experience in Embodied +Wearable Mixed Reality
Space. (2002), 1–10.

[4] Emmanuel Dubois and Laurence Nigay. 2000. Augmented Reality: Which
Augmentation for Which Reality? Dare 2000 April 2000, 1 (2000), 165–166.
https://doi.org/10.1145/354666.354695

[5] Georges Gagneré, Cédric Plessiet, Andy Lavander, and Tim White. 2018. Chal-
lenges of movement quality using motion capture in theatre. Moco (2018), 1–6.
https://doi.org/10.1145/3212721.3212883

[6] Mattias Karlsson. 2020. LitJSON/litjson. https://github.com/LitJSON/litjson
original-date: 2013-04-05T17:05:02Z.

[7] Kiron Lebeck, Tadayoshi Kohno, and Franziska Roesner. 2016. How to Safely
Augment Reality : Challenges and Directions. Proceedings of the 17th International
Workshop on Mobile Computing Systems and Applications (2016), 45–50. https:
//doi.org/10.1145/2873587.2873595

[8] Joon Hyub Lee, Sang-Gyun An, Yongkwan Kim, and Seok-Hyung Bae. 2018.
Projective Windows. Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems - CHI ’18 (2018), 1–8. https://doi.org/10.1145/3173574.3173792

[9] Lenovo. [n.d.]. Lenovo Explorer | Mixed Reality Headset | Lenovo
US. https://www.lenovo.com/us/en/virtual-reality-and-smart-devices/virtual-
and-augmented-reality/lenovo-explorer/Lenovo-Explorer/p/G10NREAG0A2 Li-
brary Catalog: www.lenovo.com.

[10] Leap Motion. 2020. leapmotion/ProjectNorthStar. https://github.com/
leapmotion/ProjectNorthStar original-date: 2018-06-05T01:00:43Z.

[11] Smart Prototyping. [n.d.]. First Project North Star Kit now available for the
masses - Polaris AR. https://www.smart-prototyping.com/blog/Polaris-AR-

releases-Project-North-Star-Kit-for-the-masses Library Catalog: www.smart-
prototyping.com.

[12] Eun Joo Rhee, Seiheui Han, Junyeong Choi, and Jong-il Park. 2011. An Interface
between Users and Virtual Objects Using Two Hands. (2011), 441–442.

[13] Laurence Ruberl. [n.d.]. senior-capstones-2020 / Laurence Ruberl Capstone. https:
//gitlab.cluster.earlham.edu/senior-capstones-2020/laurence-ruberl-capstone Li-
brary Catalog: gitlab.cluster.earlham.edu.

[14] Eric Sauda and Chris Beorkrem. 2006. Theatre of embedded intelligence. ACM
SIGGRAPH 2006 Sketches on - SIGGRAPH ’06 (2006), 150. https://doi.org/10.1145/
1179849.1180037

[15] Unity Technologies. [n.d.]. Unity - Manual: Scenes. https://docs.unity3d.com/
Manual/CreatingScenes.html Library Catalog: docs.unity3d.com.

[16] UltraLeap and LeapMotion. [n.d.]. Unity. http://developer.leapmotion.com/unity
Library Catalog: developer.leapmotion.com.

[17] Mikael Wiberg. 2017. From interactables to architectonic interaction. interactions
24, 2 (Feb. 2017), 62–65. https://doi.org/10.1145/3036203

https://doi.org/10.1145/2806173.2806180
https://doi.org/10.1145/1057792.1057803
https://doi.org/10.1145/354666.354695
https://doi.org/10.1145/3212721.3212883
https://github.com/LitJSON/litjson
https://doi.org/10.1145/2873587.2873595
https://doi.org/10.1145/2873587.2873595
https://doi.org/10.1145/3173574.3173792
https://www.lenovo.com/us/en/virtual-reality-and-smart-devices/virtual-and-augmented-reality/lenovo-explorer/Lenovo-Explorer/p/G10NREAG0A2
https://www.lenovo.com/us/en/virtual-reality-and-smart-devices/virtual-and-augmented-reality/lenovo-explorer/Lenovo-Explorer/p/G10NREAG0A2
https://github.com/leapmotion/ProjectNorthStar
https://github.com/leapmotion/ProjectNorthStar
https://www.smart-prototyping.com/blog/Polaris-AR-releases-Project-North-Star-Kit-for-the-masses
https://www.smart-prototyping.com/blog/Polaris-AR-releases-Project-North-Star-Kit-for-the-masses
https://gitlab.cluster.earlham.edu/senior-capstones-2020/laurence-ruberl-capstone
https://gitlab.cluster.earlham.edu/senior-capstones-2020/laurence-ruberl-capstone
https://doi.org/10.1145/1179849.1180037
https://doi.org/10.1145/1179849.1180037
https://docs.unity3d.com/Manual/CreatingScenes.html
https://docs.unity3d.com/Manual/CreatingScenes.html
http://developer.leapmotion.com/unity
https://doi.org/10.1145/3036203

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Previous Research
	2.2 Applications of Augmented and Virtual Reality in Other Fields

	3 Design and Implementation
	3.1 Hardware
	3.2 Software
	3.3 Architecture
	3.4 Scenes
	3.5 Interface Generation

	4 Results
	5 Future Work
	Acknowledgments
	References

