
Parks Puzzle is NP-Complete
K . Aditya Karan

akamir16@earlham.edu
Earlham College
Richmond, Indiana

ABSTRACT

Parks Puzzle is a popular puzzle game that is played on a square
grid. A Parks Puzzle consists of an 𝑛 × 𝑛 grid with 𝑛 contiguous
regions known as parks. The aim of the puzzle is to place trees
within parks such that every row, column, and park contains one
tree, and no two trees are on squares that border one another. In
this paper, we prove that deciding the solvability of a Parks Puzzle
is NP-Complete.

KEYWORDS

NP-completeness, Parks Puzzle, puzzle games

1 INTRODUCTION

The P versus NP problem is a major open problem in computer
science, and one the Millennium Problems stated by the Clay Math-
ematical Institute in 2000 with a $1,000,000 prize for a solution.
Despite decades of research into computational complexity, the
current state of the theoretical understanding of complexity leaves
much to be wanted, and the P versus NP problem potentially holds
the key to further our understanding of this sphere of theoretical
computer science. For a detailed exposition on the problem itself,
as well as its place in computer science research, see [4].

The problem of determining the complexity class of some prob-
lem is an important aspect of the study of complexity classes, of
which P and NP have taken center stage due to the practical out-
comes associated with their study. The study of the P and NP com-
plexity classes is a very mature field with vast swathes of published
literature regarding the complexity classes and problems contained
within them. As a subset of this field, the study of puzzles in NP is
also quite mature with several decades worth of work related to
identifying NP-complete puzzles, developing strategies for proving
reductions, and advancing algorithmic techniques to create practi-
cal solvers for these puzzles. However, the Parks Puzzle itself is a
largely unknown problem without any corresponding, or closely
related academic literature.

A parks puzzle consists of an𝑛×𝑛 grid with𝑛 contiguous regions
known as parks, each marked with a different colour on the grid.
Each square may be marked by a tree, represented by T, or an X,
which is used to indicate that a square does not contain a tree,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Earlham College, Computer Science Senior Capstone,
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

or may simply be left empty. A solution to a parks puzzle is a
configuration such that,

• Each row contains a tree
• Each column contains a tree
• Each park contains a tree
• No two trees are on squares that border one-another (even
diagonally).

Note that any park that consists of a single square must contain a
tree. Also, due to the arrangement of puzzle, it is possible that some
squares cannot contain a park in any situation (such as any square
sharing a row or column with a unary park). In the examples we
will see, we will mark out these basic moves so that the relationship
between various gadgets, and parks within those gadgets become
more evident.

The general Parks Puzzle decision problem is to determine, given
a board with some marked trees, if there is some configuration of
the board that is a valid solution to the puzzle. In our paper we
show that the subset of the decision problem without any marked
trees, Parks, is NP-Complete, proving a lower bound for the general
decision problem. Given a polynomial time oracle for the decision
problem, the function problem of finding an explicit solution to
a Parks Puzzle would be trivially solvable in polynomial time by
checking every square, each in polynomial time. In this paper we
prove that Parks is NP-Complete, which suggests that it is very
unlikely that there exist any efficient algorithms for the decision as
well as function problems.

2 RELATEDWORK

At this point in time there is no academic literature that is directly
concerned with the Parks Puzzle. Thus there have neither been any
published attempts to determine the complexity class of Parks, nor
have there been any formal algorithmic approaches to Parks. The
works most closely related to the proposed problem of showing that
Parks is NP-complete fall into the general category of computer
science articles that prove that some problem is NP-complete, and
more specifically, the category of research concerned with proving
that various puzzles are NP-complete. A large number of common
puzzles such as Minesweeper and Sudoku, as well as popular pencil
puzzles such as Katakuri and Yosenabe, among several others have
already been shown to be NP-Complete [10] [11] [12] .

3 BACKGROUND

Complexity Theory abstracts away the specific demands of particu-
lar models of computation operating in their particular contexts, to
instead study abstracted models of computation, and the behaviour
of algorithms with respect to these abstract models. For the sake
of this discussion it is sufficient to understand that we often seek

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Earlham College, Computer Science Senior Capstone,
K . Aditya Karan

to determine an upper-bound on the computational time taken by
an algorithm, and we express this upper bound in terms the time
complexity of an algorithm.

Recall that the Turing Machine is model of computation that con-
sists of an infinitely long tape, a "control", and some set of symbols
that constitute a language such that the machine can read and write
from the tape. The time complexity of a function, or algorithm,
expressed with reference to the Turing Machine, a standard model
of computation, is defined as follows,

Definition (Time Complexity). [15] Let M be a Turing ma-
chine that halts on all inputs. The time complexity of M is the function
𝑓 : N→ N such that 𝑓 (𝑛) is the maximum number of steps that M
uses on any input of length 𝑛.

In general, all of the standard models of computation offer poly-
nomial time simulation in each other, which is to say that every
standard model can simulate any other model within a polynomial
time factor. Thus it is meaningful, and often much more productive,
to speak of algorithms and their behavior without reference to any
model of computation at all. We simply measure the time complex-
ity of algorithms based on the number of elementary operations,
or steps, that are performed.

Since the running time of an algorithm can be a fairly complex
expression, asymptotic analysis is used to estimate the running
time, especially since we are usually interested in an algorithm’s
behavior for large inputs. This notion of complexity allows for the
classification of problem based on the best known algorithms used
to solve them.

The complexity class P and NP arise naturally from this line of
reasoning. P consists of all decision problems that have polynomial
time algorithms, which is to say that there exists some 𝑂 (𝑛𝑘) al-
gorithm that decides the problem. P has been shown to contain
several common problems such as recognizing whether a string is
a palindrome, and more recently, PRIMES, the decision problem of
determining whether a given number is a prime.

The complexity class NP consists of all decision problems that
can be verified in polynomial time, which means that given a poly-
nomial size certificate (a solution or proof) to a problem in NP, there
exists a polynomial time algorithm to check whether the solution is
valid or not. NP includes a number of problems that have a practical
application in many problem areas, such as the knapsack problem
and the general boolean satisfiability problem.While every problem
in P is trivially also in NP, the P vs NP problem is the open problem
of determining whether every problem in NP is also in P.

There are also problems that are much harder than those in NP,
which cannot even be verified in polynomial time, such as the clique
optimization problem. The complexity class NP-Hard consists of
problems that are at least as hard as every problem in NP, which
includes every problem harder than NP, but also, curiously enough,
a large number of problems in NP. One of the early advances on the
P versus NP problem came in the form of the Cook-Levin theorem,
which states that the boolean satisfiability problem is both in NP as
well as NP-Hard, that lead to the definition of a class of problems
called NP-Compete problems [5]. Since NP-Complete problems are
in NP and at least as hard as any other problem in NP, a polynomial
time algorithm for any NP-complete problem would imply that
every problem in NP is solvable in polynomial time.

Given an arbitrary decision problem 𝐴 ∈ NP, it is sufficient to
find a polynomial time reduction from any NP-Complete problem 𝐵

to𝐴, to show that𝐴 is NP-Complete. That is, given an NP-Complete
problem 𝐵, if we were to provide an algorithm that transforms any
instance of problem 𝐵 to an instance of problem 𝐴 in polynomial
time, such that the solutions to both problems coincide exactly, then
𝐴must also be NP-Complete. In this paper we first prove that Parks
is in NP, and then show that Parks is NP-Complete by describing
such a reduction from 3SAT, an NP-Complete variant of the boolean
satisfiability problem, to Parks.

4 PARKS IS IN NP

For a given instance of Parks 𝜋 , let the certificate 𝜎 be a list of
indices marking the position of each tree, and let 𝜋∗ be the parks
puzzle 𝜋 with the trees marked according to 𝜎 . Then 𝜎 is trivially of
polynomial size, and the validity of 𝜎 can be checked by traversing
every row, column, and park in 𝜋∗ exactly once, each in approxi-
mately 𝑛 + 8

√
𝑛 steps, to ensure that they each contain exactly one

tree and that no two trees are on squares that border one-another.
Therefore ⟨𝜋, 𝜎⟩ can be verified in polynomial time, and Parks is in
NP.

5 NON-CONTIGUOUS PARKS IS NP

COMPLETE

We will build up to the main result by proving the result for a
version of parks with more relaxed conditions. An NCPark puz-
zle is a Parks puzzle without the requirement that the parks must
be contiguous, which means that individual parks may be discon-
nected, but still behave in the same manner as in a Parks puzzle. It
is quite straightforward to verify that NCParks ∈ NP using the same
certificate as the proof for Parks. We will show that NCParks is
NP-complete by sketching a polynomial time reduction from 3SAT.

Definition (Consistent). A puzzle is consistent if the position
of every tree on the Park is consistent with some solution to the puzzle

Our aim is to provide a scheme for representing a boolean ex-
pression in 3CNF form as a NCPark Puzzle such that an assignment
of variables in the puzzle is consistent IFF the same assignment of
variables satisfies the boolean expression. Since a 3SAT expression
is a conjunction of ternary disjunctions, we will require a ternary
OR gadget, to represent each disjunction, and an IFF gadget that
allows variables variables to appear in multiple clauses. Let us first
begin by defining a variable park, which is a binary park that we
will be reading and writing to, to represent whether a variable is
True or False.

Definition (Variable park). A variable park is a park with two
squares, corresponding to the value of the variable, and its negation.
In general, as a matter of convention, the value of the variable will
refer to the state of the topmost, and leftmost square, such that if the
that square contains a tree, the variable is said to be True (in which
case it’s negation must be False) and vice-versa.

The variable parks will represent each variable in a 3SAT expres-
sion. The relationships between these variables will be determined
using gadgets, which are some set of parks in a particular config-
uration that impose a relationship between some set of variable

Parks Puzzle is NP-Complete
Earlham College, Computer Science Senior Capstone,

Figure 1: Three variable parks set to True

parks, such that the entire configuration is consistent if and only if
the variables share that relationship.

The first gadget we will see is the general IFF gadget shown in
figure 2. The gadget consists of two chains of variable parks laid
side by side, such that each variable park is inversely related to the
park to its side. For example, in 2 the park {𝐴1, 𝐵2} is the negation
of {𝐺1, 𝐻2}. By convention we will only set the values of the top-
most, and leftmost park, in this case {𝐴1, 𝐵2}. Note that there are
only two valid configurations of this gadget, when the setter park
is set to True, and when it is set to False, shown in figure 2 (a) and
figure 2 (b) respectively. In general, any time that we would like to
use the negation of a variable (in some gadget) we simply use one
of the variable parks on the right chain.

(a) IFF gadget set to True

(b) IFF gadget set to False

Figure 2: IFF Gadget for non-contiguous parks

Figure 3 (a) demonstrates the ternary OR gadget which is equiva-
lent to the binary expression𝑋 ∨𝑌 ∨𝑍 where the green, purple and
yellow squares represent the values of 𝑋 , 𝑌 and 𝑍 respectively. It is
quite straightforward to verify that there are no solutions when all
three variables are set to False due to the placement of the red park,
and that every other permutation produces a unique and consistent

configuration. Figure 3 (b) demonstrates how the OR gadget may
be embedded into a valid parks puzzle. The white park serves as
the background park, which is set up so that 𝐿1 is always True. The
other unary parks, which we will color in greyscale by convention,
are placed to occupy in-between rows and columns to ensure that
we have a valid parks puzzle.

(a) Ternary OR Gadget

(b) Ternary OR gadget embedded in a park

Figure 3: Ternary OR gadget for non-contiguous parks

We are now able to represent any ternary disjunction in the form
of a parks puzzle using the gadgets we have developed thus far. The
key insight that allows us to represent arbitrary conjunctions of
ternary disjunctions is the fact that, given some number of disjunc-
tions embedded in a parks puzzle, every one of those disjunctions
must be satisfied in any valid solution to the puzzle. Therefore,
as long as we place the OR gadgets in a manner that they do not
interfere with one another, we may represent any 3SAT formula
as a non-contiguous parks puzzle. In general, this placement may
be achieved by reserving 6 rows per OR gadget, and placing them
diagonally so that no two OR gadgets share any rows or columns,
and do not border one-another.

Earlham College, Computer Science Senior Capstone,
K . Aditya Karan

For example, the expression (𝑋 ∨𝑋 ∨𝑋) ∧ (!𝑋∨!𝑋∨!𝑋) may be
represented as a non-contiguous parks puzzle as shown in figure
4. The figure shows the configuration of the puzzle after all of the
basic moves have been completed, which is to say that a tree has
been placed wherever it is mandatory to place a tree, such as in all
the unary parks, and every square that is blocked by one of these
trees has been crossed off. One may observe that the park consists
of an OR gadget for every disjunction, and a single IFF gadget,
since we are using a single variable (and its negation). Every 3SAT
expression follows the same pattern, with additional IFF and OR
gadgets for each new variable, and additional disjunctive clause.

Figure 4: (𝑋 ∨ 𝑋 ∨ 𝑋) ∧ (!𝑋∨!𝑋∨!𝑋)

6 PARKS IS NP-COMPLETE

Now that we have seen that the non-contiguous Parks puzzle is
NP complete, we will prove that the regular Parks Puzzle is NP-
Complete following the same line of reasoning. The key insight to
this proof, as with the proof for NCParks, is noting that if we can
represent all of the disjunctions independently in a parks puzzle,
then any assignment of variables must satisfy every one of these
disjunctions for the puzzle to be consistent, and thus there is no
need for an explicit AND gadget. Thus, we will develop gadgets
for the IFF and OR operators, and show that Parks is NP complete
by showing that there exists a polynomial time reduction from
3SAT to Parks. As with NCParks, our aim is to provide a scheme for
representing a boolean expression in 3CNF form as a Park Puzzle
such that an assignment of variables in the puzzle is consistent IFF
the same assignment of variables satisfies the boolean expression.

Figure 5 illustrates a binary (over two variables) version of the
N-Ary IFF gadget that will be used to address repeated variables
across disjunctive clauses. In this instance, the green and navy

blue parks are variable parks. The state of the yellow park, the
setter, also sets the state of the green and blue parks (this relation
is symmetric, and it doesn’t actually matter which park is set first).

As with it’s NCParks equivalent, the basic IFF gadget has only two
possible states, with 5 (a) and 5 (b) corresponding to when the setter
park is set to True and False respectively.

This general structure can be extended to accommodate any
additional number of variable parks by introducing an additional
row and two columns, moving the corner piece ({𝐹1,𝐺1,𝐺2}) two
columns to the right, the light blue park ({𝐹5,𝐺5}) two columns to
the right and one row down, and placing the new park next to the
navy blue park ({𝐷4, 𝐸4} in the same way that the navy blue park
is placed next to the green park ({𝐵3,𝐶3}).

(a) IFF gadget set to True

(b) IFF gadget set to False

Figure 5: IFF gadget

While it is possible to complete the proof using the OR and IFF
gadgets by suitably modifying the OR gadget when the negation of a
variable is required, the proof may be simplified by introducing the
IFF-NOT gadget, which is analogous to the IFF gadget for NCParks.
The IFF-NOT gadget consists of two IFF gadgets connected such
that each of the sub-gadgets has its variable parks set to the inverse
of the other gadget. The two possible configurations of the IFF-NOT
gadget are shown in 6 (a) and 6 (b), corresponding to the setter park
being set to True and False respectively. As with the IFF gadget, the
IFF-NOT gadget can be extended to include an arbitrary number
of variable parks, whereby the number of variable parks in each
sub-gadget does not have to be the same.

Figure 7 illustrates the OR gadget, the equivalent of a ternary OR
expression with the purple, yellow and green parks as variable
parks. As with the corresponding NCParks gadget, the only incon-
sistent configuration arises when all three variable parks are set to
false, and each of the remaining 7 possible variable assignments
corresponds to a unique consistent state of gadget.

Parks Puzzle is NP-Complete
Earlham College, Computer Science Senior Capstone,

(a) IFF-NOT gadget set to True

(b) IFF-NOT gadget set to False

Figure 6: IFF-NOT gadget

The three gadgets developed so far are sufficient to express any
3SAT expression as a Parks puzzle, and we conclude that Parks is
NP-Complete. See appendix A for a detailed proof.

7 EXAMPLES

The following are a couple of simple examples that depict how the
gadgets are used in conjunction with one another to represent any
statement in 3CNF form. Figure 8 (a) depicts 𝑋 ∨ 𝑋 ∨ 𝑋 , a simple
parks instance using one ternary IFF gadget, and one ternary OR
gadget. The value of 𝑋 may be set to true by placing a tree in B10,
and to false by placing a tree in B11. It is quite straightforward to
verify, using figure 8 (b), that only one of these placements leads to
a solution to the puzzle, corresponding to when X is True.

As the expressions involve more variables and clauses, the equiv-
alent instance of parks also becomes significantly larger. Figure 9

(a) Ternary OR

(b) Basic Moves Completed

Figure 7: Ternary OR gadget

depicts 𝑋 ∨ 𝑌 ∨ 𝑍 , a larger puzzle with three unary IFF gadgets
and one OR gadget. The value of 𝑋 , 𝑌 and 𝑍 may be set using the
corresponding parks {𝐵10, 𝐵11}, {𝐻14, 𝐻15} and {𝑁 18, 𝑁 19}. The
solutions to this puzzle are identical to the solutions to the ternary
OR gadget shown in figure 7.

The final example we will see is the reduction for the expression
(𝑋 ∨ 𝑋 ∨ 𝑋) ∧ (!𝑋∨!𝑋∨!𝑋), shown in figure 10, which uses two
ternary OR gadgets and an IFF-NOT gadget. While the resulting
park is very large, it is straightforward to verify that there are no
solutions to the puzzle, which is consistent with the fact that the
original expression is not satisfiable.

8 CONCLUSION

Parks is NP-Complete. We know almost certainly that there are
no efficient algorithms to solve parks. In the future, we may ex-
plore some algorithmic approaches to NP-complete puzzles using
techniques such as genetic algorithms, and heuristic techniques to
attempt to solve some subset of the problem efficiently.

Earlham College, Computer Science Senior Capstone,
K . Aditya Karan

(a) 𝑋 ∨𝑋 ∨𝑋

(b) Basic Moves Completed

Figure 8: 𝑋 ∨ 𝑋 ∨ 𝑋

Figure 9: 𝑋 ∨ 𝑌 ∨ 𝑍 with basic moves completed

Figure 10: (𝑋 ∨ 𝑋 ∨ 𝑋) ∧ (!𝑋∨!𝑋∨!𝑋) with basic moves com-

pleted

9 ACKNOWLEDGEMENTS

I would like to thank Doctor Igor Minevich for his insightful com-
ments and support, without which I could not have completed the
proof. I would also like to thank the Department of Computer Sci-
ence, and Doctor Charlie Peck and Doctor Xunfei Jiang in particular,
for providing valuable feedback while I was working on this project.

Parks Puzzle is NP-Complete
Earlham College, Computer Science Senior Capstone,

REFERENCES

[1] Martyn Amos, Matthew Crossley, and Huw Lloyd. 2019. Solving Nurikabe
with Ant Colony Optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion (GECCO ’19). ACM, New York, NY, USA,
129–130. https://doi.org/10.1145/3319619.3338470

[2] Amit Benbassat. 2019. Genetic Algorithms Are Very Good Solved Sudoku
Generators. In Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion (GECCO ’19). ACM, New York, NY, USA, 49–50. https:
//doi.org/10.1145/3319619.3326793

[3] David W. Binkley and Bradly M. Kuhn. 1997. Crozzle: An NP-complete Problem.
In Proceedings of the 1997 ACM Symposium on Applied Computing (SAC ’97). ACM,
New York, NY, USA, 30–34. https://doi.org/10.1145/331697.331705

[4] Stephen Cook. 2003. The Importance of the P Versus NP Question. J. ACM 50, 1
(Jan. 2003), 27–29. https://doi.org/10.1145/602382.602398

[5] Stephen A. Cook. 1971. The Complexity of Theorem-Proving Procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Computing (STOC
’71). Association for Computing Machinery, New York, NY, USA, 151–158. https:
//doi.org/10.1145/800157.805047

[6] Pierluigi Crescenzi, Emma Enström, and Viggo Kann. 2013. From Theory to
Practice: NP-completeness for Every CS Student. In Proceedings of the 18th ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE
’13). ACM, New York, NY, USA, 16–21. https://doi.org/10.1145/2462476.2465582

[7] Achiya Elyasaf, Ami Hauptman, and Moshe Sipper. 2011. GA-FreeCell: Evolving
Solvers for the Game of FreeCell. In Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation (GECCO ’11). ACM, New York, NY, USA,
1931–1938. https://doi.org/10.1145/2001576.2001836

[8] Lance Fortnow and Steven Homer. 2003. A Short History of Computational
Complexity. Bulletin of the EATCS 80 (01 2003), 95–133.

[9] Robin Houston, Joseph White, and Martyn Amos. 2012. Zen Puzzle Garden is
NP-complete. Inf. Process. Lett. 112, 3 (Jan. 2012), 106–108. https://doi.org/10.
1016/j.ipl.2011.10.016

[10] Chuzo Iwamoto. 2014. Yosenabe is NP-complete. Journal of Information Processing
22, 1 (2014), 40–43. https://doi.org/10.2197/ipsjjip.22.40

[11] Richard Kaye. 2003. Minesweeper is NP-complete. The Mathematical Intelligencer
22 (March 2003), 9–15.

[12] Graham Kendall, Andrew Parkes, and Kristian Spoerer. 2008. A Survey of NP-
Complete Puzzles. In ICGA Journal.

[13] Oliver Ruepp, Markus Holzer, Paolo Boldi, and Luisa Gargano. 2010. The Com-
putational Complexity of the Kakuro Puzzle, Revisited. In Fun with Algorithms.
FUN 2010. Lecture Notes in Computer Science, vol 6099.

[14] Jorge A. Ruiz-Vanoye, Joaquín Pérez-Ortega, Rodolfo A. Pazos R., Ocotlán Díaz-
Parra, Juan Frausto-Solís, Hector J. Fraire Huacuja, Laura Cruz-Reyes, and José A.
Martínez F. 2011. Survey of Polynomial Transformations Between NP-complete
Problems. J. Comput. Appl. Math. 235, 16 (June 2011), 4851–4865. https://doi.
org/10.1016/j.cam.2011.02.018

[15] Michael Sipser. 1996. Introduction to the Theory of Computation (1st ed.). Interna-
tional Thomson Publishing.

[16] Niklas Sörensson and Niklas Eén. [n.d.]. “Introduction to MiniSat”. http:
//minisat.se/ Accessed: 2010-09-30.

[17] Gerhard J. Woeginger. 2003. Combinatorial Optimization - Eureka, You Shrink!
Springer-Verlag New York, Inc., New York, NY, USA, Chapter Exact Algorithms
for NP-hard Problems: A Survey, 185–207. http://dl.acm.org/citation.cfm?id=
885909.885927

https://doi.org/10.1145/3319619.3338470
https://doi.org/10.1145/3319619.3326793
https://doi.org/10.1145/3319619.3326793
https://doi.org/10.1145/331697.331705
https://doi.org/10.1145/602382.602398
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/2462476.2465582
https://doi.org/10.1145/2001576.2001836
https://doi.org/10.1016/j.ipl.2011.10.016
https://doi.org/10.1016/j.ipl.2011.10.016
https://doi.org/10.2197/ipsjjip.22.40
https://doi.org/10.1016/j.cam.2011.02.018
https://doi.org/10.1016/j.cam.2011.02.018
http://minisat.se/
http://minisat.se/
http://dl.acm.org/citation.cfm?id=885909.885927
http://dl.acm.org/citation.cfm?id=885909.885927

Earlham College, Computer Science Senior Capstone,
K . Aditya Karan

A DETAILED PROOF

Theorem. Parks Puzzle is NP-complete

Proof. We have already seen that Parks is in NP, so it is sufficient
to prove that Parks is NP-Hard. Let a 3SAT statement be represented
as a list of lists, with each inner list consisting of three elements,
and representing a single disjunctive clause. Every 3SAT statement
can be reduced to an instance of Parks in the following manner.

(1) Traverse the expression and create a table with each variable,
and the number of times it, as well as its negation appear
in the expression. Additionally, create a column to hold the
number of instances of a variable that have appeared so far,
and the starting coordinate of the IFF gadget holding the
corresponding variable parks, and initialize them to 0 and
(0,0) respectively.

(2) Initialize an 𝑛 × 𝑛 array with

𝑛 = 9𝑑 +
𝑟∑
𝑖=1

(3 + 𝑘𝑖) +
𝑠∑
𝑗=1

(12 + 𝑘 𝑗 + 𝑙 𝑗)

where,
• 𝑑 is the number of disjunctive clauses
• 𝑟 is the number of variables appearing without their nega-
tion, with each𝑘𝑖 equal to the number of time each variable
appears in the expression

• 𝑠 is the number of variables appearing with their negation,
with each 𝑙 𝑗 representing the number of times the negation
appears in the expression

(3) Reserve 9𝑑 rows for the OR gadgets and save the coordinates
1, 9𝑑 + 1 which locates the first IFF, or IFF-NOT gadget.

(4) For each variable 𝑥 without a negation that appears 𝑘 times,
allocate a k-ary IFF gadget. Every successive IFF gadget starts
at (𝑎 + 3 + 𝑘, 𝑏 + 3 + 2𝑘) where (𝑎, 𝑏) is the starting point
of the previous gadget. Store the starting coordinate of the
gadget in the table.

(5) For each remaining variable 𝑦 that appears 𝑘 times, with
its negation appearing 𝑙 times, allocate the corresponding
IFF-NOT gadget. The first IFF-NOT gadget starts at (𝑎 +
3 + 𝑘, 𝑏 + 3 + 2𝑘) where (𝑎, 𝑏) is the starting point of the
previous IFF gadget. Every successive IFF-NOT gadget starts
at (𝑎 + 12 + 𝑘 + 𝑙, 𝑏 + 12 + 2𝑘 + 2𝑙) relative to the previous
IFF-NOT gadget. Store the starting coordinate of the gadget
in the table.

(6) Note the coordinate (𝑥,𝑦) of the rightmost, and bottom-most
square of the final IFF, or IFF-NOT gadget, which determines
the width of every OR gadget. Allocate a park of height 1
and width 𝑥 − 2, starting from the second column, to ever
third row in the space left open for the OR gadgets

(7) For each disjunctive clause, identify the corresponding vari-
able parks by calculating an offset from the start position in
the table. Then allocate the 2nd row of the corresponding
OR gadget, which consists of the three open squares, over
the three variable parks.

(8) Finally, place the surrounding blocks. Starting from (𝑥 +1, 3),
place a unary park every three rows down and one column
to the right to block every third row of the OR gadget. Then,

starting from (𝑥 + 1 + 3(𝑑 − 1) + 2, 4), follow the same pat-
tern to block the row between each horizontal section of
the OR gadgets. If there is only one IFF gadget (one variable
without a negation) we are done. Since we have noted down
the starting point of every gadget, starting from the 𝑦 row,
for every additional variable 𝑘 without a negation, find the
starting point of its corresponding gadget (𝑎, 𝑏) and place a
unary park at (𝑥 + 1, 𝑦 + 𝑘).
If there is only one IFF-NOT gadget with𝑚 and 𝑛 appear-
ances of the variable and its negation, starting at (𝑎, 𝑏), place
a unary park at (𝑎 + 5 + 2𝑚,𝑦). For every additional variable
corresponding to a IFF-NOT gadget, with𝑚 and 𝑛 appear-
ances of the variable and its negation, and𝑘 unary parks prior
to it, place a unary park at (𝑥 −1, 𝑦+𝑘) and (𝑥 +5+2𝑚,𝑦+𝑘).

We then have a complete and valid Park Puzzle that corresponds to
the initial expression.
Since each step of the above process may be completed in polyno-
mial time with respect to the size of the original expression it is a
polynomial time reduction. □

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Parks is in NP
	5 Non-Contiguous Parks is NP complete
	6 Parks is NP-Complete
	7 Examples
	8 Conclusion
	9 Acknowledgements
	References
	A Detailed Proof

