
A Literature Review about Peer to Peer Protocol
Phi H. Nguyen
Earlham College
Richmond, Indiana

phnguyen17@earlham.edu

KEYWORDS
p2p, NAT hole-punching, decentralization

ACM Reference Format:
Phi H. Nguyen. 2020. A Literature Review about Peer to Peer Protocol. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Napster(www.napster.com) was perhaps the most popular applica-
tion that began the wave of Peer-to-peer applications in the early
2000s.[2] Built by Shawn Fanning, a freshman at Northeastern Uni-
versity, Napster allowed client to publish and download mp3 files
directly from any other client. Its failure was inevitable because of
the copyright infringement. However, it opens the possibility of
communication directly via Peer-to-peer, without any third party
regulation, without the worry of their activities being tracked, and
their data being sniffed. A very important problem that Peer-to-
peer protocol can solve really well is messaging on the internet: we
could send a message directly to the recipient without any influence
of a centralized server. Using a messaging service that stores our
conversations inside a centralized server means that the people
inside the conversation are not the only ones who know about it,
there is a heavy concern over privacy in this method. Facebook,
for example, shared 86 millions of user profiles with Cambridge
Analytica without consent, used for political reasons since 2013
[5]. Google lost a lawsuit concerning them tracking their users
in incognito mode, and you can actually join the victim team and
have a chance to get 5000 dollar if you have used Google Chrome
incognito any time since 2016. [8] Peer-to-peer is the ultimate de-
centralized solution for the issues of data bleaching, security and
privacy of users.

2 CHALLENGES
There are numerous challenges in designing a Peer-to-peer appli-
cation in today world - Our current Internet architecture is just not
optimized for it. Although there are many challenges in Peer-to-
peer network in dealing with file transfer, this section only focuses
on the challenges that a peer-to-peer chat system may encounter.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2.1 Missing data
Stutzbach et al. addresses the challenge of transferring data from
one client directly to another client.[6] Since the connection rely
on the bandwidth of the two users, which could differ significantly,
packets can be missing during the transmission. There must be a
way to handle missing data. This problem has been solved rela-
tively well in a client-server structure, but not in a Peer-to-peer
environment.

2.2 Long session
Stutzbach et al. also brings up the issue of handling long session
between two clients in an unreliable network. During the transmis-
sion of exchanging packets, one client can have a better bandwidth
than the other, which can affect the longevity of the connection.

2.3 Dynamic addressing
One thing that client-server architecture has been able to solve but
not Peer-to-peer is dynamic addressing. In client-server architec-
ture, the server will only sends data to client once requested, or a
session has been established. Moreover, the address of the server
is constant, hence, the client will always know where to request
and always expect to get an answer. For Peer-to-peer, once a client
address changes, due to dynamic addressing by DHCP and PPP,
any peer that does not have this new address will not know where
to look for.[6]

2.4 Network Address Translation
Perhaps this is the most discussed challenge in designing a Peer-to-
peer application because of the complexity as well as popularity of
the problem.

Network Address Translation(NAT) resides in majority of home
routers/private networks. Its job is to block unwanted outside re-
quest to private network and only allows authorized ones. When
we want to make a request to someone else, NAT record our local
IP address and port number, then send out the request using the
public IP address and a new port number that it assigns to our
request. Then when receiving the data, NAT will know what local
IP address/port number to send it to, since the public port has been
opened when sending the message. Only request to opened port
can be forwarded to the recipient.

This is the main reason why Peer-to-peer could not function well
in the current Internet architecture. When a peer wants to send a
message to another peer to initiate the conversation, it would not
know what port is open on the other side, hence the message will
be automatically dropped by the recipient’s NAT.

Halkes et al claims that 75 percent machines on the internet are
not connectable, which means there is a high chance that a peer
that you wants to connect is behind a NAT.[3]

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Trovato and Tobin, et al.

Not only bypassing NAT is difficult, there are also a variety of
NATs in real world that have different configurations, designed by
different brands. Some method can bypass some particular NAT
models but not the others. [1]

2.5 Peer reputation
Before connecting two peers, we need to determine the reputation
of each peer, whether it is a trustworthy client. Trustworthiness
here can involve many things: low bandwidth, low capacity, low
uptime, etc. [7]

3 METHODS
While there are various issues need to be solved in a peer-to-peer
network, this section will focus on how to bypass Network Address
Translation (NAT), since it is one of the first and alsomost important
part to get a connection between two peers.

3.1 Universal Plug and Play
Developed by Microsoft, Universal Plug and Play(UPnP) NAT Tra-
versal is a technique in Windows XP. When a new host needs a
connection, a Windows XP machine configure the network address-
ing and broadcast its presence in a subnet, This machine can act
as a NAT Gateway, or a control point, and detect whether it is
behind a NAT. This NAT Traversal technique allows peer-to-peer
applications to traverse the NAT Gateway by dynamic control of
public ports. The main downside of this technique is insecurity, and
only a subset of routers allow this technique to be used. [4]

3.2 Simple Traversal UDP Through Network
Address Translators(STUN)

STUN is a lightweight protocol that lets devices behind NAT dis-
cover the type of NATs between them. A STUN client learns about
port assignment of a NAT by sending a STUN request and expects
to receive a STUN response. A STUN request is a Binding Request
over UDP. This Binding Request would arrive in a STUN server that
sits between the clients. Since the request could traverse through
multiple NATs, it would carry the address of the last NAT device
to the STUN server, which would send a STUN response that con-
tains this address back to the client. By comparing the local address
with the content of the response, a client can determine whether
they are behind a NAT, and aware of the last NAT before it could
reach another peer (assume being on a different subnet). [4] The
downside of this is STUN does not work well with Symmetric NAT,
which creats a binding based on source and destination IP address
and port. This technique creates a new IP address after reaching
the server and hence would fail the connection with other peers.[4]
Moreover, STUN requires the application to be upgraded to sup-
port public STUN server, which makes this technique very hard to
deploy. [4]

3.3 NAT hole-punching
Perhaps this is the most popular techniques to help a peer request
to bypass a NAT. As mentioned in the NAT section above, before a
request can reach the outside world, the private IP/port needs to
be translated into a public IP/port. And any response/request to

this public port at this public IP address will be forwarded to the
client. Hence, this port has been opened and there is a "hole" in the
NAT table. Hole punching means to open a port on the NAT so that
we requests that want to reach us can bypass the NAT by going
through that "hole" (or public port).

Generally, hole punching would need a relay server that sits
between the clients to establish a connection. This technique can
use the server to maintain the connection between them, or leaving
it outside of the equation once the connection has been established.

Hu (2008) studies the architecture of BitTorrent and Skype and
claimed that while a Peer-to-peer over TCP is possible, UDP is
a more favored transport. The reason for this is very simple.[4]
TCP needs a three-way handshake before they can actually send
data, while UDP does not require a session to be established for
the data to be sent. In an untrusted and unreliable environment
of Peer-to-peer network, UDP is hence easier to manage and de-
ploy. The architecture that Hu (2008) suggests also aligns with the
architecture of a relay server, though the name was changed to
"connection broker". This architecture solves the problem posed
by STUN by using an additional trick: they use the same IP/port
with the brokers and with the other peers, hence it does not create
a new IP/port pair in Symmetric NAT.

Ford 2005 claimed that having a relay server to forward messages
is generally a more robust technique.[1] Using a hybrid architec-
ture, the network can still rely on the client-server method while
eliminating the fear of their data being stored in the centralized
server. The role of the relay server in this scenario is merely to
forward message and nothing else. However appealing it may look,
it is still a single point of failure architecture - the two clients need
the server to be up all time to maintain a session - and the clients
do not know if there data is being stored or not and whether or not
they should trust this server.

Another method is to leave the relay server once the connection
has been established. When A wants to connect with B, it sends a
request to the response server. The data includes the public IP/port
pair of A. The relay server will record A and its target client B in a
table. When B connects to the server and requests to connect with
A, the relay server forwards A’s IP/public port address to B and B’s
ones to A. Now A and B knows each other opened port, hence can
communicate with each other. One of the issues that might occur is
that the port must be opened before the target client sends packets.
One possible solution is to confirm the connection between A to
server and B to server before connecting the two together.

4 CONCLUSION
In conclusion, data privacy is a significant issue in today’s central-
ized architecture. And Peer-to-peer network is one of the solutions
to decentralize the Internet, making each connection become au-
tonomous and anonymous. While there are many challenges to
this protocol due to the way our Internet is configured, there are
also proposed solutions to solve. One of the biggest challenges is
NAT, which blocks unwelcoming requests from outside world to
our computer. While this is beneficial in terms of security, it also
blocks Peer-to-peer transmission. The paper presented multiple
ways to bypass a NAT and the most popular and robust method yet
is Hole-punching with a relay server.

A Literature Review about Peer to Peer Protocol Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] Bryan Ford, Pyda Srisuresh, and Dan Kegel. 2005. Peer-to-Peer Communication

Across Network Address Translators.. In USENIX Annual Technical Conference,
General Track. 179–192.

[2] Geoffrey Fox. 2001. Peer-to-peer networks. Computing in Science & Engineering 3,
3 (2001), 75–77.

[3] Gertjan Halkes and Johan Pouwelse. 2011. UDP NAT and Firewall Puncturing in
the Wild. In International Conference on Research in Networking. Springer, 1–12.

[4] Zhou Hu. 2005. NAT traversal techniques and peer-to-peer applications. In HUT
T-110.551 Seminar on Internetworking. Citeseer, 04–26.

[5] Jim Isaak and Mina J Hanna. 2018. User data privacy: Facebook, Cambridge
Analytica, and privacy protection. Computer 51, 8 (2018), 56–59.

[6] Daniel Stutzbach and Reza Rejaie. 2006. Understanding churn in peer-to-peer net-
works. In Proceedings of the 6th ACM SIGCOMM conference on Internet measurement.
189–202.

[7] Yao Wang and Julita Vassileva. 2003. Trust and reputation model in peer-to-peer
networks. In Proceedings Third International Conference on Peer-to-Peer Computing
(P2P2003). IEEE, 150–157.

[8] Davey Winder. 2020. Google Chrome Privacy Lawsuit: Could You Get A 5,000
Payout? https://www.forbes.com/sites/daveywinder/2020/06/03/google-chrome-
privacy-lawsuit-could-you-get-a-5000-payout-incognito-mode-class-action/

https://www.forbes.com/sites/daveywinder/2020/06/03/google-chrome-privacy-lawsuit-could-you-get-a-5000-payout-incognito-mode-class-action/
https://www.forbes.com/sites/daveywinder/2020/06/03/google-chrome-privacy-lawsuit-could-you-get-a-5000-payout-incognito-mode-class-action/

	1 Introduction
	2 Challenges
	2.1 Missing data
	2.2 Long session
	2.3 Dynamic addressing
	2.4 Network Address Translation
	2.5 Peer reputation

	3 Methods
	3.1 Universal Plug and Play
	3.2 Simple Traversal UDP Through Network Address Translators(STUN)
	3.3 NAT hole-punching

	4 Conclusion
	References

