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ABSTRACT
Artificial Intelligence (AI) has been used extensively in the field of
medicine. More recently, advanced machine learning algorithms
have become a big part of oncology as they assist with detection
and diagnosis of cancer. Convolutional Neural Networks (CNN) are
common in image analysis and they offer great power for detection,
diagnosis and staging of cancerous regions in radiology images.
Convolutional Neural Networks get more accurate results, andmore
importantly, need less training data with transfer learning, which
is the practice of using pre-trained models and fine-tuning them for
specific problems. This paper proposes utilizing transfer learning
along with CNNs for staging cancer diagnoses. Randomly initialized
CNNs will be compared with CNNs that used transfer learning to
determine the extent of improvement that transfer learning can
offer with cancer staging and metastasis detection. Additionally,
the model utilizing transfer learning will be trained with a smaller
subset of the dataset to determine if using transfer learning reduced
the need for a large dataset to get improved results.
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1 INTRODUCTION
Artificial Intelligence (AI) has grown into an advanced field that
plays a major role in our healthcare. AI in conjunction with Ma-
chine Learning (ML), has been aiding radiologists with detecting
cancerous regions [2], determining if the cancerous region is benign
or malignant [5], to what degree cancer has spread outside of the
initial area [6], how well a patient is responding to treatment [8],
and more. Among many ML methods assisting radiologists, Con-
volutional Neural Networks (CNN) are deep learning algorithms
capable of extracting features from images and making classifi-
cation using those features [4]. CNN’s are one of the major deep
learning methods on image analysis and have become a popular
tool in AI-assisted oncology [2]. Over the years many studies have
attempted to improve the accuracy of these implementations by
comparing different CNN architectures [14], addressing overfitting
of the models, using continuous learning [12], transfer learning
[14], etc. This proposal aims to improve cancer staging CNNs by
applying transfer learning methods and combining the unique im-
provements that CNN and transfer learning methods can offer. In
this paper, related work for implementation of CNNs and transfer
learning for cancer detection is examined and compared to set up
an understanding of the algorithms and the tools, the implemen-
tation of the CNNs and transfer learning is described, and finally

the evaluation method for determining the accuracy of the CNNs
is mentioned. Additionally, major risks for the implementation and
a proposed timeline of the implementation are included.

2 BACKGROUND
This section focuses on outlining the main components of what is
being proposed in this paper. CNN’s and transfer learning methods
are used frequently in recent related research and it is important to
understand the basics of how they work.

Figure 1: Simple CNN implementation (derived from Choy
et al. [4])

2.1 Convolutional Neural Network
Convolutional Neural Networks are a subset of deep learning meth-
ods that extract features from images and further use these features
for classification. CNNs are optimized for having images as input
and since radiology is image focused, CNNs are one of the most
common AI methods used in radiology [16]. A CNN consists of
convolution and pooling layers. Figure 1 shows the layer layout of
a basic CNN [4]. Convolution layers include filters that, through
training, learn to create a feature map which outputs detected fea-
tures from the input [16]. This feature map is then fed to a pooling
layer, which downsizes the image by picking either the maximum
value from the portion of the image that was covered by the con-
volution filter or the average value from the portion of the image
that was covered by the convolution filter. These two pooling meth-
ods are referred to as Max Pooling layer and Average Pooling
layer respectively. The purpose of pooling is to reduce computa-
tion and/or avoiding overfitting the model. At the end of the last
convolution and pooling layers there is fully connected (FC) layer
which is used as the classifier after the feature extracting process.
Figure 2 visualises a CNN with two convolution layers and two
pooling layers. There are multiple architectures for CNNs which
use different layer combinations [16] and these architectures are
used in detection, segmentation and diagnosis steps of oncology
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Figure 2: CNN with two conv and pooling layers (derived
from Soffer et al. [16])

[14]. Among the common architectures there are: AlexNet and
VGG architectures. AlexNet is the shallow one of the two with five
convolutional layers. AlexNet can have different numbers of pool-
ing layers, normally on the convolutional layers that are closer to
the FC layer. Figure 3 shows the AlexNet architecture without the
pooling layers included. VGG is a deeper CNN with VGG16 having
sixteen layers and VGG19 having nineteen layers. Both VGG16 and
VGG19 are very clear about how many convolutional and pooling
layers are included. Figure 4 shows a VGG16 architecture along
with a breakdown of the layers. As shown in figure 4, pooling lay-
ers are present after every two or three convolutional layers in
the VGG16 architecture. Both AlexNet and VGG16 have been used
in cancer detection systems [16]. AlexNet, as the shallower of the
two architectures is more commonly used for detection while VGG
is used for diagnosis since it is a deeper network and as a result
can extract more precise features from the radiology images. I am
using a VGG16 architecture for the transfer learning experiment
on the my dataset and a model closely similar to the VGG16 for the
non-transfer learning part of the software.

Figure 3: AlexNet architecture (derived from Han et al. [7]).
AlexNet includes five convlution layers and a combination
of pooling layers after any of the convolution layers

2.2 Transfer Learning
Transfer learning is inspired by the way humans learn new knowl-
edge. The core concept is built around the idea of not isolating
different learning environments, as knowledge gained from one
learning process can be used in a different learning process with a
different but similar goal. CNNs are commonly known to require
large amounts of data for reasonable levels of accuracy, and as a re-
sult, training CNNs could face problems such as: not having access
to enough data, not having access to enough hardware resources for
computation, time-consuming training process, etc. Transfer learn-
ing can reduce the need for large sets of data while also increasing

Figure 4: VGG16 architecture (derived from Peltarion web-
site [11] based on Simonyan et al. [15]). VGG16 includes a
total sixteen layers of convolution and pooling

the accuracy of the CNN [13]. When a CNN without transfer learn-
ing is being trained, it is initialized with random weights and biases
between the nodes of the network, however, in transfer learning, a
pre-trained model is used as the initial state of the network and as a
result less data is required to train a capable model for the original
problem. This pre-trained model is a network that was trained to
solve a different but similar problem. For instance, if we have a
functional model that can detect horses in images, the model can be
used, with little fine-tuning, for transfer learning into a new model
that aims to detect dogs. Transfer learning can be very useful in
cancer detecting CNNs as it helps improve and expedite the training
process. Transfer learning with [1] and without [13] fine tuning has
been used in medical imaging systems and has shown improved
results. My software will be aimed to compare results of cancer
metastasis detection with and without transfer learning and it will
utilize fine-tuning.

3 RELATEDWORK
Substantial research has been done on the usability of both CNN
and transfer learning methods and how they can improve the re-
sults of Computer-Aided Detection (CADe) and Computer-Aided
Diagnosis (CADx) systems. Shin et al. use three different CNN archi-
tectures along with transfer learning for cancer detection and have
published very thorough results in their work [14]. Shi et al. use
similar methods to reduce the number of false positives in cancer
detection [13]. Bi et al. [2], Hosny et al. [8] and Soffer et al. [16] all
have thoroughly explored the current and future applications of
CNNs in cancer detection.

4 DESIGN
The process of acquiring images and pre-processing the data is
no different than other cancer detection CNNs, I will be using the
Breast Histopathologic Cancer Detection dataset from Kaggle [10].
This dataset includes over 200,000 images of breast pathology scans
and it includes both images of metastatic cancer which was spread
to other tissue and benign tumors that have not spread to other
places. Determining if cancer has spread to other regions is a crucial
part of staging the cancer in the National Cancer Institution’s TNM
staging system [3]. Table 1 and Table 2 show how the TNM system
is utilized for each patient’s staging and how important detecting
the spread of cancer and the extent of the spread is.
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Range Meaning
T 0-4 Size of the tumor,

bigger number means bigger tumor
N 0-3 Number of nearby lymph nodes

affected by cancer spread
M 0-1 Whether the cancer has spread to

a distant organ
Table 1: Themeaning of T, N andMnumbers in TNM staging
system. (derived from: National Cancer Institute’s website
[3] )

Stage Meaning
Stage 0 Abnormal cells present

but no cancer present yet.
Stage I, II and III Cancer is present

Stage IV Cancer has spread to
a distant organ

Table 2: Staging of the final TNMnumber. (derived from: Na-
tional Cancer Institute’s website [3] )

Figure 5 shows the proposed framework of this project. This
framework will be applied to both non-transfer learning and the
VGG architectures with the key difference that the pre-trained
model will only be used in the VGG architecture for transfer learn-
ing. Each architecture will be given exactly the same dataset to
compare the results and check if transfer learning improved the re-
sults. Afterwards, the VGG architecture with the pre trained model
for transfer learning will be trained once more with significantly
less data to compare the results and check if transfer learning will
indeed reduce the need for a large dataset to achieve better results.
As shown in figure 5, the datasets will be pre-processed before be-
ing used for feature extraction in the CNN or for the classification,
this includes downsampling the photos to a smaller size to reduce
the load and improve the speed of training.

Figure 5: The overall framework of the project

Layer Trainable
1 Conv 32 Yes
2 Conv 32 Yes
3 Conv 32 Yes
3 Pooling Yes
4 Conv 64 Yes
5 Conv 64 Yes
6 Conv 64 Yes
7 Pooling Yes
8 Conv 128 Yes
9 Conv 128 Yes
10 Conv 128 Yes
11 Flatten Yes
12 Dense 256 Yes
13 Dense 1 Yes

Table 3: Layers of CNN in non-transfer learning model

Layer Trainable
1 Input No
2 Conv 64 No
3 Conv 64 No
4 Pooling No
5 Conv 128 No
6 Conv 128 No
7 Pooling No
8 Conv 256 No
9 Conv 256 No
10 Conv 256 No
11 Pooling No
12 Conv 512 No
13 Conv 512 Yes
14 Conv 512 Yes
15 Pooling Yes
16 Conv 512 Yes
17 Conv 512 Yes
18 Conv 512 Yes
19 Pooling Yes
20 Flatten Yes
21 Dense 256 Yes
22 Dense 1 Yes

Table 4: Layers of VGG16 CNN ImageNet transfer learning
model with frozen and trainable fine-tuning layers

Tables 3 and 4 show the details the CNN layers used for the
model without transfer learning and the VGG model using transfer
learning. I have decided to use the pre-trained model trained on
the ImageNet dataset [9] on the VGG CNN. Table 4 shows that the
first eight convolution layers of the VGG CNN were chosen to be
frozen with the ImageNet weights and biases for feature extraction
and the remaining five convolution layers are chosen to remain
trainable for fine-tuning the model for detecting cancer metastasis
in this specific dataset.
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4.1 Training and Results
The dataset was not balanced with the cases of cancer spread. So
I chose about 80,000 of each of the two classes. A subset of 8000
images of each class was utilized as the validation files. Files from
the remaining images in the dataset that were not used for training
or validation will be used for testing the evaluation and validity of
the results. Training on the non-transfer learning model are shown
in figure 6. Figure 7 shows the training, validation accuracy and loss
for the VGG16 model utilizing transfer learning with the ImageNet
dataset. The slight increase in accuracy on the same data can be
explained by the bigger model and the frozen layers pre-trained on
extracting features from the images. Figure 8 shows the training
and validation accuracy along with the loss for the same VGG16
model with the only difference that only half of the dataset was
used for training and validation at 40,000 images of each class.

Figure 6: Training and validation accuracy and loss of the
non-transfer learning model

Figure 7: Training and validation accuracy and loss of the
transfer learning model on ImageNet VGG16

Figure 8: Training and validation accuracy and loss of the
transfer learning model with half of the dataset

The models were saved after training and used on a test dataset.
This test dataset is 8000 images of each class that were not used
for training and validation steps. The saved models were used for

evaluating the models on their performance outside of the training
process. Table 5 represents the results of this evaluation. Based
on the results, using transfer learning not only improved the final
results by roughly three percent it also had improved results when
only half of the dataset was used for training.

Model Evaluation result
Basic CNN 89.68%

VGG CNN using transfer learning
with ImageNet Dataset 92.12%

VGG CNN using transfer learning
with ImageNet Dataset trained only

on half of the dataset 91.84%
Table 5: Final results used on the testing dataset not used in
the training and validation steps

4.2 Validation of Results
The testing dataset included 16000 images which were 8000 images
of each class. This testing dataset was not used in the training and
validation steps, meaning the dataset was never seen before by the
models. The benefit of using new images for evaluation is two fold:
first, it shows that the training didn’t overfit the model to only the
training and validation datasets and second, it makes sure that the
model is extracting features and classifying the images based on
the correct features and not a coincidental set of features in the
training and validation datasets.

5 FUTUREWORK
Using the final model trained and created by this software towards
more complex problems and datasets would be my first idea of how
to move forward after this. The model can be used for transfer learn-
ing in datasets that include the TNM staging numbers or datasets
that have history of patient’s visits for evaluating the response to
cancer treatment. Another direction that this work could be help-
ful to build upon is to use different pre-trained models instead of
ImageNet. Using models previously trained on clinical applications
as opposed to generalized image datasets such as ImageNet and
Ciphar could potentially improve the results as the model would
be more specialized in the radiology detection world of datasets
rather than images of everyday objects.

6 ACKNOWLEDGMENTS
I would like to thank Charles Peck and David Barbella for helping
with this research idea and clarifying the details of the proposed
technology.

REFERENCES
[1] Yaniv Bar, Idit Diamant, Lior Wolf, and Hayit Greenspan. 2015. Deep learning

with non-medical training used for chest pathology identification. In Medical
Imaging 2015: Computer-Aided Diagnosis, Vol. 9414. International Society for
Optics and Photonics, 94140V.

[2] Wenya Linda Bi, Ahmed Hosny, Matthew B. Schabath, Maryellen L. Giger,
Nicolai J. Birkbak, Alireza Mehrtash, Tavis Allison, Omar Arnaout, Christo-
pher Abbosh, Ian F. Dunn, Raymond H. Mak, Rulla M. Tamimi, Clare M. Tem-
pany, Charles Swanton, Udo Hoffmann, Lawrence H. Schwartz, Robert J. Gillies,
Raymond Y. Huang, and Hugo J. W. L. Aerts. 2019. Artificial intelligence



Cancer metastasis detection using convolutional neural networks and transfer learning

in cancer imaging: Clinical challenges and applications. CA: A Cancer Jour-
nal for Clinicians 69, 2 (2019), 127–157. https://doi.org/10.3322/caac.21552
arXiv:https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21552

[3] cancer.gov. [n.d.]. National Cancer Institute website. Retrieved September 22,
2020 from https://www.cancer.gov/about-cancer/diagnosis-staging/staging

[4] Garry Choy, Omid Khalilzadeh, Mark Michalski, Synho Do, Anthony E. Samir,
Oleg S. Pianykh, J. Raymond Geis, Pari V. Pandharipande, James A. Brink, and
Keith J. Dreyer. 2018. Current Applications and Future Impact of Machine
Learning in Radiology. Radiology 288, 2 (2018), 318–328. https://doi.org/10.1148/
radiol.2018171820

[5] Macedo Firmino, Giovani Angelo, Higor Morais, Marcel R Dantas, and Ricardo
Valentim. 2016. Computer-aided detection (CADe) and diagnosis (CADx) system
for lung cancer with likelihood of malignancy. Biomedical engineering online 15,
1 (2016), 1–17.

[6] Richard Ha, Peter Chang, Jenika Karcich, Simukayi Mutasa, Reza Fardanesh,
Ralph T Wynn, Michael Z Liu, and Sachin Jambawalikar. 2018. Axillary lymph
node evaluation utilizing convolutional neural networks using MRI dataset. Jour-
nal of Digital Imaging 31, 6 (2018), 851–856.

[7] Xiaobing Han, Yanfei Zhong, Liqin Cao, and Liangpei Zhang. 2017. Pre-trained
alexnet architecture with pyramid pooling and supervision for high spatial res-
olution remote sensing image scene classification. Remote Sensing 9, 8 (2017),
848.

[8] Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H Schwartz, and
Hugo JWL Aerts. 2018. Artificial intelligence in radiology. Nature Reviews Cancer
18, 8 (2018), 500–510.

[9] ImageNet. [n.d.]. ImageNet Dataset. Retrieved March 17, 2020 from http:
//www.image-net.org

[10] Kaggle. [n.d.]. Histopathologic Cancer Detection Dataset. Retrieved March
17, 2020 from https://www.kaggle.com/c/histopathologic-cancer-detection/
overview

[11] peltarion.com. [n.d.]. Peltarion Website. Retrieved September 22, 2020
from https://peltarion.com/knowledge-center/documentation/modeling-
view/build-an-ai-model/snippets---your-gateway-to-deep-neural-network-
architectures/vgg-snippet

[12] Oleg S Pianykh, Georg Langs, Marc Dewey, Dieter R Enzmann, Christian J
Herold, Stefan O Schoenberg, and James A Brink. 2020. Continuous learning AI
in radiology: implementation principles and early applications. Radiology (2020),
200038.

[13] Zhenghao Shi, Huan Hao, Minghua Zhao, Yaning Feng, Lifeng He, Yinghui Wang,
and Kenji Suzuki. 2019. A deep CNN based transfer learning method for false
positive reduction. Multimedia Tools and Applications 78, 1 (2019), 1017–1033.

[14] Hoo-Chang Shin, Holger R Roth, Mingchen Gao, Le Lu, Ziyue Xu, Isabella Nogues,
Jianhua Yao, Daniel Mollura, and Ronald M Summers. 2016. Deep Convolutional
Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset
Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging 35,
5 (2016), 1285–1298.

[15] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[16] Shelly Soffer, Avi Ben-Cohen, Orit Shimon, Michal Marianne Amitai, Hayit
Greenspan, and Eyal Klang. 2019. Convolutional Neural Networks for Radiologic
Images: A Radiologist’s Guide. Radiology 290, 3 (2019), 590–606. https://doi.org/
10.1148/radiol.2018180547

https://doi.org/10.3322/caac.21552
https://arxiv.org/abs/https://acsjournals.onlinelibrary.wiley.com/doi/pdf/10.3322/caac.21552
https://www.cancer.gov/about-cancer/diagnosis-staging/staging
https://doi.org/10.1148/radiol.2018171820
https://doi.org/10.1148/radiol.2018171820
http://www.image-net.org
http://www.image-net.org
https://www.kaggle.com/c/histopathologic-cancer-detection/overview
https://www.kaggle.com/c/histopathologic-cancer-detection/overview
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/snippets---your-gateway-to-deep-neural-network-architectures/vgg-snippet
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/snippets---your-gateway-to-deep-neural-network-architectures/vgg-snippet
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/snippets---your-gateway-to-deep-neural-network-architectures/vgg-snippet
https://doi.org/10.1148/radiol.2018180547
https://doi.org/10.1148/radiol.2018180547

	Abstract
	1 Introduction
	2 Background
	2.1 Convolutional Neural Network
	2.2 Transfer Learning

	3 Related Work
	4 Design
	4.1 Training and Results
	4.2 Validation of Results

	5 Future Work
	6 Acknowledgments
	References

