
Unlabeled Consensus Modeler: Leveraging Voting Ensemble’s
Consensus on Unlabeled Data

Dong Cao
Computer Science Department at Earlham College

Richmond, Indiana, USA
dcaohuu18@earlham.edu

ABSTRACT
Voting is an important Ensemble Learning technique. However,
there has not been much discussion about leveraging the base
classifiers’ consensus on unlabeled data to better inform the final
prediction. My proposed method identifies the data points where
the ensemble reaches consensus and where conflict arises in the
unlabeled space. A meta weighted KNN model is trained upon this
half-labeled set with the labels of the consensus and the conflict
points marked as “Unknown,” which is treated as a new, additional
class. The predictions of the meta model are expected to better
inform the decision of the ensemble in the case of conflict. This re-
search project aims to implement my proposedmethod and evaluate
it on a range of benchmark datasets.

KEYWORDS
Machine Learning, Voting Ensemble, Semi-supervised Learning

1 INTRODUCTION
Ensemble learning has received great attention from the Machine
Learning community, as the aggregated output of multiple learners
is often better than that of any single one of them. For classifica-
tion problems specifically, several methods have been proposed to
combine multiple classifiers’ predictions: Voting, Bagging, Boost-
ing, Stacking, etc. Among these methods, Voting is very important
not only because it is a simple, intuitive, and effective method in
and of itself, but also because it plays the role of determining the
collective prediction in other ensemble frameworks, like Bagging
and Boosting. However, there has not been much discussion about
leveraging the consensus of the base classifiers on unlabeled data
in order to better inform the final prediction. My proposed method
identifies the data points where the ensemble reaches consensus
and where conflict arises in the unlabeled space. A meta weighted
KNN model is trained upon this half-labeled set with the labels of
the consensus and the conflict points marked as “Unknown,” which
is treated as a new, additional class. The predictions of the meta
model are expected to better inform the decision of the ensemble in
the case of conflict. I named this method Unlabeled Consensus Mod-
eler (UCM). The motivation is that the points agreed upon by the
base classifiers represent patterns that we can confidently extract
from the training set. However, the training set can also contain
noise that leads the base classifiers astray and makes them disagree
with each other. In the unlabeled space, the agreed patterns may be
clearer around a point of dispute and we can use this information to

CS388 Methods for Research and Dissemination, Fall 2021, Earlham College
© 2021 Association for Computing Machinery.

strengthen the prediction for that point. This research project is an
attempt to implement UCM and compare it with Simple Majority
Voting in terms of their performance on a variety of benchmark
datasets under some conditions.
In the next section, I will review the related and background knowl-
edge in two domains: Voting Ensemble and Semi-supervised Learn-
ing, as well as the differences between UCM and the work intro-
duced. The third section delves deeper into the theoretical mo-
tivation and the specific problem that my method targets. It also
presents a formal design of UCM and how its components are imple-
mented. Finally, the experimental setup and evaluation framework
are discussed in the fourth section.

2 RELATEDWORK
2.1 Voting Methods
Majority Voting: Majority Voting or Plural Voting is probably the
most well-known voting system due to its straightforwardness.
A class is assigned to a sample if it receives a majority of votes
from the base classifiers. However, there are different definitions
of “majority.” Depending on the situation, it can mean unanimity,
simple majority (i.e. more than 50% of the base classifiers agree on
a label). Yet, the most common approach has been that whichever
class receiving the most votes “wins” and becomes the ultimate
prediction. Simple Majority Voting makes a lot of assumptions
about the relative accuracy of the classifiers and each classifiers’
performance with respect to a particular class [10]. In reality, most
of these assumptions are not accurate. However, the simplicity and
efficiency of this method still makes it one of the favorite options
of Machine Learning practitioners.

Weighted Voting: Another popular voting scheme is Weighted Vot-
ing. Weighted Voting drops one of the assumptions made by Major-
ity Voting [10]. Instead of considering the predictions of the base
classifiers equally likely to be accurate, Weighted Voting attaches
different weights to the classifiers’ predictions based on their perfor-
mance in the training set. One of the most well-known examples of
this approach is the voting system of AdaBoost, which trains a num-
ber of weak learners, weights them differently based on their error
rates, and aggregates their predictions by taking into account these
weights [6]. Other techniques make use of fuzzy sets [3], particle
swarm optimization [8], genetic algorithm [12], or instance-wise
weight assignment based on a classifier’s relative performance with
respect to others’ [5].

Support Function: With a support function, instead of being con-
fined to a single output class, a base classifier can provide their
predictions in terms of the likelihood of a sample belonging to each



CS388 Methods for Research and Dissemination, Fall 2021, Earlham College Dong Cao

of the available classes. The term “Support Function” is used by
Woźniak et al. in their survey of classifiers combination [15]. One
of the widely used types of likelihood is the a posteriori probability.
Kittler et al. have proposed a variety of rules by which a class’s a
posteriori probabilities from different base classifiers can be com-
bined [9]. Later work has focused on comparing the effectiveness of
these rules under various conditions [1]. The value of the support
function can also be the rankings of the classes. In this case, the
method is known as Borda Count, which outperforms Majority
Voting in some experiments [11].

While the aforementioned methods tackle the problem differently,
they all agree that it is critical for the ensemble to be diverse. This
concept of diversity can be interpreted and measured in a variety
of ways. Usually, it is important that the classifiers don’t make the
same mistake together. Some diversification strategies are using
different underlying algorithms for the base classifiers or different
feature sets [9], and bootstrapping.

2.2 Semi-supervised Learning
Because UCM utilizes information in both the labeled and unlabeled
spaces, it can be linked to semi-supervised learning. However, since
semi-supervised learning is a broad field, I will only focus on the
areas that are relevant to making use of the ensemble’s consensus
on unlabeled data. Before I go into the details of each area, let us
quickly touch upon the rudiments of semi-supervised learning. The
big problem that semi-supervised learning tries to solve is that
labeled data for training is often insufficient and difficult to acquire
while unlabeled data is abundant. Semi-supervised learning aims to
fully exploit the few labeled samples available to extract patterns
from the pool of ample unlabeled data [14].

Inductive versus Transductive: The landscape of semi-supervised
learning methods comprises of two major approaches: Inductive
and Transductive. The goal of an inductive framework is to build
a mechanism that can independently predict unlabeled samples
one by one. This goal is shared with most of the supervised algo-
rithms but the training process of an inductive algorithm takes in
both labeled and unlabeled data. On the other hand, a transductive
method seeks to optimize the predictions for each space of data.
This space contains samples that are either labeled or unlabeled
and a transductive algorithm attempts to use the distribution of the
entire space to provide a set of predictions for all data points. In
other words, the input for a transductive algorithm is the whole
data space, not a single data point [14]. In this aspect, UCM is simi-
lar to the transductive approach when the meta model needs to be
fed the complete unlabeled set. However, while most transductive
algorithms use graph theory to model the similarity among the data
points [14], UCM looks to draw a connection between the patterns
in the training set and those in the unlabeled set via inspecting the
consensus of the base classifiers.

Tri-Training: Tri-Training is an inductive method that uses three
classifiers, all of which are trained upon the same complete dataset.
When it comes to leveraging unlabeled data for “refinement,” a
classifier is given a sample to train with the label agreed upon by

the other two [16]. A variation of Tri-Training is Multi-Train when
more than three classifiers are used and a sample is accepted for
the refinement of one classifier if a majority of the rest of the clas-
sifiers return the same label [7]. It is not difficult to point out the
similarities between my idea and that of Tri-Training, when my
meta KNN model learns from the data labeled based on the base
classifiers’ consensus. However, there are fundamental differences
between UCM and Tri-Training:

• As mentioned, Tri-Training falls under the inductive ap-
proach while UCM is generally transductive.

• My meta KNN model does not learn from the labeled data
in the training set.

• There is no co-training. In other words, my meta KNNmodel
does not affect the base classifiers in any way. Hence, there
is no refinement of the base classifiers using unlabeled data.

• My meta KNN model also takes into account the uncertainty
of the nearby conflict points.

3 UNLABELED CONSENSUS MODELER
3.1 Theoretical Motivation
UCM is expected to take advantage of the collective decisions of a
voting system and summarize how strong these collective patterns
are in the unlabeled set to help with the classification of the conflict
points. In Figure 1, the graph on the left presents the training set,
which has two classes “A” and “B.” On the right is the graph of
the unlabeled set, which is pseudo-labeled based on the majority
decisions of two classifiers 𝑐𝑙1 and 𝑐𝑙2. The circled question mark
indicates a conflict point where 𝑐𝑙1 and 𝑐𝑙2 disagree. It is also shown
in the training set for the sake of convenient comparison.

Figure 1: Training (left) and unlabeled (right) sets

In the unlabeled set, it is apparent that the conflict point is more
likely to have the label “A.” However, the additional B in the training
set causes confusion and dissent between 𝑐𝑙1 and 𝑐𝑙2. UCM settles
this dispute by adding another voice based on the consensus in the
unlabeled space. The feasibility of UCM rest on two assumptions.
First, the pseudo-labels inferred from consensus are reliable. This
assumption can be satisfied with a diverse ensemble. If base clas-
sifiers with different learning “lenses” all agree on the label of a
point then this label is credible. The second assumption of UCM
is that the distribution of the unlabeled set is more trustworthy
and contains less noise than the training set, especially around the
point of dispute.
It is also possible that in the unlabeled space, there are other conflict



Unlabeled Consensus Modeler: Leveraging Voting Ensemble’s Consensus on Unlabeled Data CS388 Methods for Research and Dissemination, Fall 2021, Earlham College

points around the point in question. Figure 2 signifies the other
conflict points with unringed question marks. These points are
assigned the class “Unknown.”

Figure 2: Accounting for uncertainty in the unlabeled set

In Figure 2, although there are two A’s near the point in question,
UCM also takes notice of the three unknown samples around it and
is less confident that the point in question also has the label “A.”
The analysis of the theoretical motivation of UCM makes it clearer
that the distinctions between UCM and Tri-Training reflect the
different objectives that the two methods are pursuing. While Tri-
Training, a representative of semi-supervised learning, tackles the
lack of labeled data, UCM aims at detecting fake patterns that exist
in the training set but not in the unlabeled set, thereby reducing the
chance of overfitting. Even though the approach of UCM is semi-
supervised, it is intended to serve supervised frameworks. There
is no need for refinement using unlabeled data since the training
data should be sufficient for the base classifiers to perform decently
on their own and UCM will only play the role of assisting them
with making the final prediction where discord occurs. Another
reason for no retraining of the base classifiers is that many semi-
supervised techniques suffer from degradation due to their biased
conjecture about the unlabeled data [17]. By keeping the opinions
of the base classifiers intact and only putting another voice on top
of their opinions when needed, UCM is anticipated to be less prone
to the issue of degradation.

3.2 Design and Implementation
Figure 3 is the architectural diagram of UCM. I will now dissect
each of its components, most of which are implemented with the
Scikit-learn open source library [13].

Basic preprocessing: Missing values are imputed using the median
for numerical variables and the mode for categorical features. Af-
ter that, one-hot encoding is applied to satisfy many algorithms’
requirement that categorical data be represented as numeric val-
ues. Although it may make sense for some categorical features to
be transformed according to an ordinal scale, the vast number of
evaluation datasets and the fact that they spread across a range of
specialized domains make it difficult to determine the ordinality
of each categorical feature. More importantly, the objective of this
research is not to achieve the best performance on the benchmark
datasets. Rather, it is to carry out a comparative experiment of two
frameworks and the choice of the preprocessing method does not

Figure 3: UCM framework

interfere with this objective significantly. In addition to the categor-
ical encoding, all numerical features are standardized and clamped
to the same scale.

Base classifiers training: I follow the strategy of using different
underlying algorithms to diversify the ensemble. There are six base
classifiers, each of which corresponds to one algorithm in the dia-
gram. The classifiers are constructed from Scikit-learn’s standard
implementations of the listed algorithms with the default hyper-
parameter values. Only the n_jobs argument, if available, is set to
-1 to enable parallelization. For the Multilayer Perceptron (MLP)
algorithm, there is only one hidden layer and the number of hidden
nodes is 𝑛+1

2 where 𝑛 is the number of features, i.e. the number
of input nodes. This is based on the suggestion that the number
of hidden neurons should be “somewhere between the input layer
size and the output layer size.” [2] All other hyperparameters are
set to the package’s default values, including the ReLU activation
function.

Majority voting: After the unlabeled points are predicted by the
base classifiers, their predictions go through majority voting. The
predictions of the majority voting system are in terms of probabili-
ties. For instance, if a sample is classified as “A” by five out of six
learners and as “B” by only one learner then the prediction will be
5
6 “A” and 1

6 “B.” UCM can work with any voting schemes whose
output can be interpreted probabilistically and if there is a way to



CS388 Methods for Research and Dissemination, Fall 2021, Earlham College Dong Cao

determine consensus. Thus, it is well-suited with a support function.
Nevertheless, a more complicated voting technique is unnecessary
since UCM is not a voting system in and of itself but is built upon
an existing voting framework. Simple majority voting, therefore, is
good enough for assessing UCM and its contribution, if any, to the
improvement of the voting ensemble. Another advantage of using
majority voting is, potentially, plenty of ties that will be helpful for
evaluating UCM against the baseline of random guessing.

Pseudo-labeling: A conflict threshold needs to be set. For exam-
ple, if a data point is agreed upon by at least five out of six (or
approximately 83%) classifiers then it is labeled as the majority’s
decision. Otherwise, it is indicated as “Unknown.”

Meta KNN modeling: A distance-weighted KNN is then applied
to the pseudo-labeled set to predict each of the unknown points.
For each of these points, the meta model also considers the other
unknown samples around it. The model’s output is the probabilities
of the point belonging to one of the original classes or the class
“Unknown”, which consolidates the amount of uncertainty into the
predictions and serves as a regulating factor. This is why it is crucial
for the predictions to be probabilistic.
KNN is chosen to be the algorithm of the meta model because it is
an intuitive way of thinking about the dissimilarity in distribution
between the training set and the unlabeled set. Other algorithms
that make a strong use of the data distribution and that can produce
probabilistic predictions like SVM may also be good candidates.
However, for each unknown point to be classified, it needs to be
removed from the pseudo-labeled set before the learner is fit. KNN,
as a lazy learning algorithm, nicely meets this “leave-one-out” re-
quirement, although the relaxation of this requirement may be
acceptable for some eager learning algorithms.

Producing the final predictions: For each sample and class, the two
probabilities from majority voting and meta KNN modeling are
added and whichever class receives the highest probability score
becomes the ultimate label for that sample. I may experiment with
other algebraic operations but addition is selected at this point
because of its simplicity.

4 EXPERIMENT AND EVALUATION
4.1 Datasets
I plan to reuse the 73 public benchmark datasets from the UCI
repository that Kuncheva et al. employ in their study of major
voting systems [10].

4.2 Evaluation
The performance of UCM is compared with that of mere majority
voting to see if the additional technique of modeling the consensus
brings any benefit. I intend to particularly examine the effective-
ness of UCM in breaking ties, compared with random guessing. The
accuracy rate and 𝐹1 score will be the metrics due to their popular-
ity and applicability and will be estimated using cross-validation
to reduce bias, especially with small datasets. The results will be
evaluated with one of the statistical tests recommended by Demšar
for comparing two classifiers over multiple datasets [4] and that

have been widely adopted.
Another interesting experiment would involve using only five base
classifiers with KNN versus without KNN to see the effect of the
meta model being different from any of the base classifiers and
check if the meta model biasedly favors the base classifier of the
same learning algorithm, i.e. whether it agrees with this base clas-
sifier most of the time, especially when the base classifier is wrong.
The results will also provide a sense of the influence of the meta
model in 3-2 situations and whether it can overturn the decision of
majority voting.

5 LOGISTICS
5.1 Timeline

Table 1: Timeline

Date To be done
Oct 04 - 10 Start implementing the design of UCM
Oct 11 - 17 + UCM is implemented and tested

+ Update the paper with new implemen-
tation details
+ Submit the first draft

Oct 18 - 24 + Start designing and implementing the
statistical tests
+ Run UCM on a few datasets to get
a sense of its performance and experi-
ment with some tweaks
+ Submit the latest code

Oct 25 - 31 + Continue to work on the statistical
tests and refine the design of UCM

Nov 01 - 07 + The fundamental statistical tests are
completed
+ Run the tests and report the results in
the second draft

Nov 08 - 14 + Make progress on the other statistical
tests
+ Interpret the reported results under
different angles
+ Polish the software’s API

Nov 15 - 23 + Run the completed statistical tests
+ Update the final paper with the new
results and submit the software

5.2 Risks
Even though I am familiar with building predictive models for a
particular problem, I have never performed a comparative evalua-
tion of two Machine Learning models over multiple datasets. I also
do not have much experience with hypothesis testing. While the
implementation of UCM will mostly be handled by Scikit-learn, a
package that I have already worked with, I will need to figure out
on my own many details about hypothesis testing. To address this
risk, I make the evaluation collapsible with the comparison of UCM
and Majority Voting as the core and other experiments as additive
complements. As it can be seen from the timeline, the evaluation



Unlabeled Consensus Modeler: Leveraging Voting Ensemble’s Consensus on Unlabeled Data CS388 Methods for Research and Dissemination, Fall 2021, Earlham College

is allocated a great amount of time. I have also found out that the
Stats module of SciPy does provide some common tests that can
be useful. Another challenge with performing the evaluation is
the huge number of datasets involved. If this becomes a serious
problem, I will switch to a smaller subset that has been used in
other studies.

ACKNOWLEDGMENTS
I would like to thank Dr. David Barbella for his detailed feedback
during the development of this proposal.

REFERENCES
[1] Luís A. Alexandre, Aurélio C. Campilho, and Mohamed Kamel. 2001. On com-

bining classifiers using sum and product rules. Pattern Recognition Letters 22, 12
(2001), 1283–1289.

[2] Adam Blum. 1992. Neural networks in C++ an object-oriented framework for
building connectionist systems. John Wiley & Sons, Inc.

[3] Robert Burduk. 2012. Recognition task with feature selection and weighted
majority voting based on interval-valued fuzzy sets. In International Conference
on Computational Collective Intelligence. Springer, 204–209.

[4] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine Learning Research 7 (2006), 1–30.

[5] Alican Dogan and Derya Birant. 2019. A weighted majority voting ensemble
approach for classification. In 2019 4th International Conference on Computer
Science and Engineering (UBMK). IEEE, 1–6.

[6] Yoav Freund and Robert E. Schapire. 1997. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and system

sciences 55, 1 (1997), 119–139.
[7] Shenkai Gu and Yaochu Jin. 2017. Multi-train: A semi-supervised heterogeneous

ensemble classifier. Neurocomputing 249 (2017), 202–211.
[8] Asma Kausar, M. Ishtiaq, M. Arfan Jaffar, and AnwarM.Mirza. 2010. Optimization

of ensemble based decision using PSO. In Proceedings of the World Congress on
Engineering, Vol. 1. IAENG, 1–6.

[9] Josef Kittler, Mohamad Hatef, Robert P.W. Duin, and Jiri Matas. 1998. On com-
bining classifiers. IEEE transactions on pattern analysis and machine intelligence
20, 3 (1998), 226–239.

[10] Ludmila I. Kuncheva and Juan J. Rodríguez. 2014. A weighted voting framework
for classifiers ensembles. Knowledge and Information Systems 38, 2 (2014), 259–
275.

[11] Florin Leon, Sabina-Adriana Floria, and Costin Bădică. 2017. Evaluating the effect
of voting methods on ensemble-based classification. In 2017 IEEE International
Conference on INnovations in Intelligent SysTems and Applications (INISTA). IEEE,
1–6.

[12] Yasir Mehmood, Muhammad Ishtiaq, Muhammad Tariq, and M. Arfan Jaffar. 2010.
Classifier ensemble optimization for gender classification using genetic algorithm.
In 2010 International Conference on Information and Emerging Technologies. IEEE,
1–5.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[14] Jesper E. Van Engelen and Holger H. Hoos. 2020. A survey on semi-supervised
learning. Machine Learning 109, 2 (2020), 373–440.

[15] Michał Woźniak, Manuel Grana, and Emilio Corchado. 2014. A survey of multiple
classifier systems as hybrid systems. Information Fusion 16 (2014), 3–17.

[16] Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Exploiting unlabeled data using
three classifiers. IEEE Transactions on knowledge and Data Engineering 17, 11
(2005), 1529–1541.

[17] Xiaojin Jerry Zhu. 2005. Semi-supervised learning literature survey. (2005).


	Abstract
	1 Introduction
	2 Related Work
	2.1 Voting Methods
	2.2 Semi-supervised Learning

	3 Unlabeled Consensus Modeler
	3.1 Theoretical Motivation
	3.2 Design and Implementation

	4 Experiment and Evaluation
	4.1 Datasets
	4.2 Evaluation

	5 Logistics
	5.1 Timeline
	5.2 Risks

	Acknowledgments
	References

