
Unlabeled Consensus Modeler: Leveraging Voting Ensemble’s
Consensus on Unlabeled Data

Dong Cao
Computer Science Department at Earlham College

Richmond, Indiana, USA
dcaohuu18@earlham.edu

ABSTRACT
Voting is an important Ensemble Learning technique. However,
there has not been much discussion about leveraging the base
classifiers’ consensus on unlabeled data to better inform the final
prediction. My proposed method identifies the data points where
the ensemble reaches consensus and where conflict arises in the
unlabeled space. A meta weighted KNN model is trained upon this
half-labeled set with the labels of the consensus and the conflict
points marked as “Unknown,” which is treated as a new, additional
class. The predictions of the meta model are expected to better
inform the decision of the ensemble in the case of conflict. This re-
search project aims to implement my proposedmethod and evaluate
it on a range of benchmark datasets.

KEYWORDS
Machine Learning, Voting Ensemble, Semi-supervised Learning

1 INTRODUCTION
Ensemble learning has received great attention from the Machine
Learning community, as the aggregated output of multiple learners
is often better than that of any single one of them. For classifica-
tion problems specifically, several methods have been proposed to
combine multiple classifiers’ predictions: Voting, Bagging, Boost-
ing, Stacking, etc. Among these methods, Voting is very important
not only because it is a simple, intuitive, and effective method in
and of itself, but also because it plays the role of determining the
collective prediction in other ensemble frameworks, like Bagging
and Boosting. However, there has not been much discussion about
leveraging the consensus of the base classifiers on unlabeled data
in order to better inform the final prediction. My proposed method
identifies the data points where the ensemble reaches consensus
and where conflict arises in the unlabeled space. A meta weighted
KNN model is trained upon this half-labeled set with the labels of
the consensus and the conflict points marked as “Unknown,” which
is treated as a new, additional class. The predictions of the meta
model are expected to better inform the decision of the ensemble in
the case of conflict. I named this method Unlabeled Consensus Mod-
eler (UCM). The motivation is that the points agreed upon by the
base classifiers represent patterns that we can confidently extract
from the training set. However, the training set can also contain
noise that leads the base classifiers astray and makes them disagree
with each other. In the unlabeled space, the agreed patterns may be
clearer around a point of dispute and we can use this information to

CS488 Senior Capstone, Fall 2021, Earlham College
© 2021 Dong Cao.

strengthen the prediction for that point. This research project is an
attempt to implement UCM and compare it with Simple Majority
Voting in terms of their performance on a variety of benchmark
datasets under some conditions.
In the next section, I will review the related and background knowl-
edge in two domains: Voting Ensemble and Semi-supervised Learn-
ing, as well as the differences between UCM and the work intro-
duced. The third section delves deeper into the theoretical mo-
tivation and the specific problem that my method targets. It also
presents a formal design of UCM and how its components are imple-
mented. Finally, the evaluation framework and results are discussed
in the fourth section.

2 RELATEDWORK
2.1 Voting Methods
Majority Voting: Majority Voting or Plural Voting is probably the
most well-known voting system due to its straightforwardness.
A class is assigned to a sample if it receives a majority of votes
from the base classifiers. However, there are different definitions
of “majority.” Depending on the situation, it can mean unanimity,
simple majority (i.e. more than 50% of the base classifiers agree on
a label). Yet, the most common approach has been that whichever
class receiving the most votes “wins” and becomes the ultimate
prediction. Simple Majority Voting makes a lot of assumptions
about the relative accuracy of the classifiers and each classifiers’
performance with respect to a particular class [10]. In reality, most
of these assumptions are not accurate. However, the simplicity and
efficiency of this method still makes it one of the favorite options
of Machine Learning practitioners.

Weighted Voting: Another popular voting scheme is Weighted Vot-
ing. Weighted Voting drops one of the assumptions made by Major-
ity Voting [10]. Instead of considering the predictions of the base
classifiers equally likely to be accurate, Weighted Voting attaches
different weights to the classifiers’ predictions based on their perfor-
mance in the training set. One of the most well-known examples of
this approach is the voting system of AdaBoost, which trains a num-
ber of weak learners, weights them differently based on their error
rates, and aggregates their predictions by taking into account these
weights [5]. Other techniques make use of fuzzy sets [3], particle
swarm optimization [8], genetic algorithm [12], or instance-wise
weight assignment based on a classifier’s relative performance with
respect to others’ [4].

Support Function: With a support function, instead of being con-
fined to a single output class, a base classifier can provide their
predictions in terms of the likelihood of a sample belonging to each



CS488 Senior Capstone, Fall 2021, Earlham College Dong Cao

of the available classes. The term “Support Function” is used by
Woźniak et al. in their survey of classifiers combination [16]. One
of the widely used types of likelihood is the a posteriori probability.
Kittler et al. have proposed a variety of rules by which a class’s a
posteriori probabilities from different base classifiers can be com-
bined [9]. Later work has focused on comparing the effectiveness of
these rules under various conditions [1]. The value of the support
function can also be the rankings of the classes. In this case, the
method is known as Borda Count, which outperforms Majority
Voting in some experiments [11].

While the aforementioned methods tackle the problem differently,
they all agree that it is critical for the ensemble to be diverse. This
concept of diversity can be interpreted and measured in a variety
of ways. Usually, it is important that the classifiers don’t make the
same mistake together. Some diversification strategies are using
different underlying algorithms for the base classifiers or different
feature sets [9], and bootstrapping.

2.2 Semi-supervised Learning
Because UCM utilizes information in both the labeled and unlabeled
spaces, it can be linked to semi-supervised learning. However, since
semi-supervised learning is a broad field, I will only focus on the
areas that are relevant to making use of the ensemble’s consensus
on unlabeled data. Before I go into the details of each area, let us
quickly touch upon the rudiments of semi-supervised learning. The
big problem that semi-supervised learning tries to solve is that
labeled data for training is often insufficient and difficult to acquire
while unlabeled data is abundant. Semi-supervised learning aims to
fully exploit the few labeled samples available to extract patterns
from the pool of ample unlabeled data [14].

Inductive versus Transductive: The landscape of semi-supervised
learning methods comprises of two major approaches: Inductive
and Transductive. The goal of an inductive framework is to build
a mechanism that can independently predict unlabeled samples
one by one. This goal is shared with most of the supervised algo-
rithms but the training process of an inductive algorithm takes in
both labeled and unlabeled data. On the other hand, a transductive
method seeks to optimize the predictions for each space of data.
This space contains samples that are either labeled or unlabeled
and a transductive algorithm attempts to use the distribution of the
entire space to provide a set of predictions for all data points. In
other words, the input for a transductive algorithm is the whole
data space, not a single data point [14]. In this aspect, UCM is simi-
lar to the transductive approach when the meta model needs to be
fed the complete unlabeled set. However, while most transductive
algorithms use graph theory to model the similarity among the data
points [14], UCM looks to draw a connection between the patterns
in the training set and those in the unlabeled set via inspecting the
consensus of the base classifiers.

Tri-Training: Tri-Training is an inductive method that uses three
classifiers, all of which are trained upon the same complete dataset.
When it comes to leveraging unlabeled data for “refinement,” a
classifier is given a sample to train with the label agreed upon by

the other two [17]. A variation of Tri-Training is Multi-Train when
more than three classifiers are used and a sample is accepted for
the refinement of one classifier if a majority of the rest of the clas-
sifiers return the same label [6]. It is not difficult to point out the
similarities between my idea and that of Tri-Training, when my
meta KNN model learns from the data labeled based on the base
classifiers’ consensus. However, there are fundamental differences
between UCM and Tri-Training:

• As mentioned, Tri-Training falls under the inductive ap-
proach while UCM is generally transductive.

• My meta KNN model does not learn from the labeled data
in the training set.

• There is no co-training. In other words, my meta KNNmodel
does not affect the base classifiers in any way. Hence, there
is no refinement of the base classifiers using unlabeled data.

• My meta KNN model also takes into account the uncertainty
of the nearby conflict points.

3 UNLABELED CONSENSUS MODELER
3.1 Theoretical Motivation
UCM is expected to take advantage of the collective decisions of a
voting system and summarize how strong these collective patterns
are in the unlabeled set to help with the classification of the conflict
points. In Figure 1, the graph on the left presents the training set,
which has two classes “A” and “B.” On the right is the graph of
the unlabeled set, which is pseudo-labeled based on the majority
decisions of two classifiers 𝑐𝑙1 and 𝑐𝑙2. The circled question mark
indicates a conflict point where 𝑐𝑙1 and 𝑐𝑙2 disagree. It is also shown
in the training set for the sake of convenient comparison.

Figure 1: Training (left) and unlabeled (right) sets

In the unlabeled set, it is apparent that the conflict point is more
likely to have the label “A.” However, the additional B in the training
set causes confusion and dissent between 𝑐𝑙1 and 𝑐𝑙2. UCM settles
this dispute by adding another voice based on the consensus in the
unlabeled space. The feasibility of UCM rest on two assumptions.
First, the pseudo-labels inferred from consensus are reliable. This
assumption can be satisfied with a diverse ensemble. If base clas-
sifiers with different learning “lenses” all agree on the label of a
point then this label is credible. The second assumption of UCM
is that the distribution of the unlabeled set is more trustworthy
and contains less noise than the training set, especially around the
point of dispute.
It is also possible that in the unlabeled space, there are other conflict



Unlabeled Consensus Modeler: Leveraging Voting Ensemble’s Consensus on Unlabeled Data CS488 Senior Capstone, Fall 2021, Earlham College

points around the point in question. Figure 2 signifies the other
conflict points with unringed question marks. These points are
assigned the class “Unknown.”

Figure 2: Accounting for uncertainty in the unlabeled set

In Figure 2, although there are two A’s near the point in question,
UCM also takes notice of the three unknown samples around it and
is less positive that the point in question also has the label “A.”
The analysis of the theoretical motivation of UCM makes it clearer
that the distinctions between UCM and Tri-Training reflect the
different objectives that the two methods are pursuing. While Tri-
Training, a representative of semi-supervised learning, tackles the
lack of labeled data, UCM aims at detecting fake patterns that exist
in the training set but not in the unlabeled set, thereby reducing the
chance of overfitting. Even though the approach of UCM is semi-
supervised, it is intended to serve supervised frameworks. There
is no need for refinement using unlabeled data since the training
data should be sufficient for the base classifiers to perform decently
on their own and UCM will only play the role of assisting them
with making the final prediction where discord occurs. Another
reason for no retraining of the base classifiers is that many semi-
supervised techniques suffer from degradation due to their biased
conjecture about the unlabeled data [18]. By keeping the opinions
of the base classifiers intact and only putting another voice on top
of their opinions when needed, UCM is anticipated to be less prone
to the issue of degradation.

3.2 Design and Implementation
Figure 3 is the architectural diagram of UCM. I will now dissect each
of its components, most of which are implemented with Pandas
[15], Numpy [7], and Scikit-learn [13].

Data Cleaning: Constant columns, identity columns, and duplicated
rows are dropped. Missing values are consistently signified across
all datasets.

Basic preprocessing: Missing values are imputed using the median
for numerical variables and the mode for categorical features. If a
categorical feature has already been ordinally encoded (for example,
in the case of the lymphography dataset), it is kept as such and is
treated as a numeric feature. Otherwise, one-hot encoding is ap-
plied to satisfy many algorithms’ requirement that categorical data
be represented as numeric values. Although it may make sense for
some categorical features to be transformed according to an ordinal
scale, the vast number of evaluation datasets and the fact that they

Figure 3: UCM framework

spread across a range of specialized domains make it difficult to
determine the ordinality of each categorical feature. Moreover, that
all the categorical features are one-hot encoded also makes the
findings more reproducible. Most importantly, the objective of this
research is not to achieve the best performance on the benchmark
datasets. Rather, it is to carry out a comparative experiment of two
frameworks and the choice of the preprocessing method does not
interfere with this objective significantly. In addition to the categor-
ical encoding, all numerical features are standardized and clamped
to the same scale.

Base classifiers training: I follow the strategy of using different
underlying algorithms to diversify the ensemble. There are six base
classifiers, each of which corresponds to one algorithm in the dia-
gram. The classifiers are constructed from Scikit-learn’s standard
implementations of the listed algorithms. The random_state argu-
ment, if available, is set to 1. The max_iter of Logistic Regression
is increased to 1000 to ensure convergence. The same argument
is raised to 5000 for the Multilayer Perceptron (MLP) algorithm.
For MLP, there is only one hidden layer and the number of hidden
nodes is ⌊𝑛+12 ⌋ where 𝑛 is the number of features, i.e. the number
of input nodes. This is based on the suggestion that the number
of hidden neurons should be “somewhere between the input layer
size and the output layer size.” [2] All other hyperparameters are
set to the package’s default values, including the ReLU activation
function. For the KNN algorithm, the weights hyperparameter is
set to 'distance' instead of 'uniform' while the n_neighbors
is fixed at 3. This is because we want the meta KNN model to have
the same configuration and some validation sets may have no more



CS488 Senior Capstone, Fall 2021, Earlham College Dong Cao

than 5 samples. Apart from the above exceptions, all the algorithms’
default hyperparameter values are retained.

Majority voting: After the unlabeled points are predicted by the
base classifiers, their predictions go through majority voting. The
predictions of the majority voting system are in terms of probabili-
ties. For instance, if a sample is classified as “A” by five out of six
learners and as “B” by only one learner then the prediction will be
5
6 “A” and 1

6 “B.” UCM can work with any voting schemes whose
output can be interpreted probabilistically and if there is a way to
determine consensus. Thus, it is well-suited with a support function.
Nevertheless, a more complicated voting technique is unnecessary
since UCM is not a voting system on its own but is built upon an
existing voting framework. Simple Majority Voting, therefore, is
good enough for assessing UCM and its contribution, if any, to the
improvement of the voting ensemble.

Pseudo-labeling: A certainty threshold needs to be set. For example,
if a data point is agreed upon by at least five out of six (or approxi-
mately 83%) classifiers then it is labeled as the majority’s decision.
Otherwise, it is indicated as “Unknown.” For this project, we use a
certainty threshold of 51%.

Meta KNN modeling: A distance-weighted KNN is then applied
to the pseudo-labeled set to predict each of the unknown points.
For each of these points, the meta model also considers the other
unknown samples around it. The model’s output is the probabilities
of the point belonging to one of the original classes or the class
“Unknown,” which consolidates the amount of uncertainty into the
predictions and serves as a regulating factor. This is why it is crucial
for the predictions to be probabilistic.
KNN is chosen to be the algorithm of the meta model because it is
an intuitive way of thinking about the dissimilarity in distribution
between the training set and the unlabeled set. Other algorithms
that make a strong use of the data distribution and that can produce
probabilistic predictions like SVM may also be good candidates.
However, for each unknown point to be classified, it needs to be
removed from the pseudo-labeled set before the learner is fit. KNN,
as a lazy learning algorithm, nicely meets this “leave-one-out” re-
quirement, although the relaxation of this requirement may be
acceptable for some eager learning algorithms.
The meta KNN model is built based on Scikit-learn’s implemen-
tation of the algorithm and is configured in a similar way to the
base KNN classifier. Whereas this is not a hard requirement, it is
to make sure that any performance discrepancy between Majority
Voting and UCM, if any, can be more confidently attributed to the
additional information acquired from the unlabeled space, rather
than the meta KNNmodel’s configuration happening to be more (or
less) suited to the benchmark datasets. This allows a more rigorous
examination of UCM’s core assumption regarding the potentially
useful information about the unlabeled set’s distribution. However,
this decision also brings up a risk of the meta KNN model biasedly
favoring the base KNN classifier.

Producing the final predictions: For each sample and class, the two
probabilities from majority voting and meta KNN modeling are

added and whichever class receives the highest probability score
becomes the ultimate label for that sample.

4 EXPERIMENT AND EVALUATION
4.1 Evaluation
The performance of UCM is compared with that of mere Majority
Voting to see if the additional technique of modeling the consensus
brings any benefit. The accuracy rate and weighted 𝐹1 score are the
metrics due to their popularity and applicability and are estimated
using 10-fold cross-validation to reduce bias, especially with small
datasets. The experiment involves 23 public benchmark datasets
from the UCI repository. These datasets form a subset of the datasets
that Kuncheva et al. and Dogan et al. employ in their studies [10][4].
Information about the datasets can be found in Table 1.

Table 1: Basic characteristics of the evaluation datasets

ID Dataset Attributes Instances Classes
1 abalone 8 4177 29
2 anneal 38 798 6
3 arrhythmia 279 452 16
4 audiology 69 226 24
5 breast-cancer 9 286 2
6 breast-cancer-w 9 699 2
7 car 6 1728 4
8 crx 15 690 2
9 dermatology 34 366 6
10 ecoli 7 336 4
11 glass 10 214 7
12 ionosphere 34 351 2
13 iris 5 150 3
14 kr-vs-kp 36 3196 2
15 labor-neg 16 57 2
16 letter 16 20000 26
17 liver disorders 6 345 2
18 lymphography 20 148 4
19 nursery 8 12960 5
20 page-blocks 10 5473 5
21 segment 21 2310 7
22 sonar 208 60 2
23 spambase 57 4601 2

As described earlier, there is a possibility of the meta KNN model
being “partial” to the base classifier of the same algorithm and
mainly acting as an additional base KNN classifier. To verify this
hypothesis, the performance of a Weighted Voting ensemble with
the base KNN classifier’s weight doubled is also measured. This
Weighted Voting ensemble is simply a Majority Voting ensemble
with seven base classifiers, two of which use the KNN algorithm.



Unlabeled Consensus Modeler: Leveraging Voting Ensemble’s Consensus on Unlabeled Data CS488 Senior Capstone, Fall 2021, Earlham College

Table 2: Majority Voting’s, UCM’s, and Weighted Voting’s performance (%)

ID Dataset MV Ac UCM Ac WV Ac MV 𝐹1 UCM 𝐹1 WV 𝐹1
1 abalone 26.56 26.41 26.03 23.66 23.41 23.48
2 anneal 92.6 91.35 92.22 92.64 91.11 92.27
3 arrhythmia 66.74 65.41 66.08 58.04 55.62 57.03
4 audiology 82.23 78.72 82.25 78.47 73.88 78.7
5 breast-cancer 71.55 70.48 70.18 67.95 67.31 67.96
6 breast-cancer-w 96.85 96.85 97 96.87 96.87 97.01
7 car 88.72 89.35 87.5 89.18 89.59 87.67
8 crx 84.18 84.18 83.46 82.74 83.05 82.76
9 dermatology 97.24 96.97 97.24 97.23 96.94 97.21
10 ecoli 86.54 86.25 86.55 85.62 85.28 85.66
11 glass 66.28 65.76 70.48 61.5 60.56 66.45
12 ionosphere 92.86 91.14 90.29 92.66 90.8 89.88
13 iris 95.33 95.33 95.33 95.29 95.29 95.29
14 kr-vs-kp 96.87 96.4 95.93 96.86 96.37 95.9
15 labor-neg 94.33 94.33 96.33 94.19 94.19 96.19
16 letter 92.36 91.39 94.76 92.41 91.43 94.78
17 liver disorders 72.94 72.06 73.24 72.81 71.23 72.69
18 lymphography 80.95 80.29 81.67 79.71 78.79 80.6
19 nursery 90.57 90.9 89.29 89.76 90.1 88.64
20 page-blocks 96.05 96.18 96.03 95.57 95.76 95.71
21 segment 95.93 96.32 96.19 95.87 96.28 96.14
22 sonar 66.71 66.74 67.64 65.39 65.87 66.96
23 spambase 93.91 93.98 93.83 93.88 93.96 93.81

Average 83.84 83.34 83.89 82.53 81.9 82.73

Figure 4: Differences between UCM’s and Majority Voting’s accuracy: UCM Ac - MV Ac

Figure 5: Differences between UCM’s and Majority Voting’s 𝐹1 scores: UCM 𝐹1 - MV 𝐹1



CS488 Senior Capstone, Fall 2021, Earlham College Dong Cao

Figure 6: Weighted Voting’s and UCM’s relative accuracy against Majority Voting

Figure 7: The number of instances and the accuracy difference between Majority Voting and UCM

Figure 8: The number of instances and the accuracy difference with the outlier removed



Unlabeled Consensus Modeler: Leveraging Voting Ensemble’s Consensus on Unlabeled Data CS488 Senior Capstone, Fall 2021, Earlham College

4.2 Results
The performance of Majority Voting, UCM, and Weighted Voting
on the benchmark datasets is recorded in Table 2. For both met-
rics, Majority Voting surpasses UCM on 12 out of 23 datasets and
outperforms by a larger amount on average. Figures 4 and 5 are
visualizations of the discrepancy between the performance of the
two methods.
Weighted Voting is the ultimate winner with an average accuracy
rate of 83.89%. This outcome challenges the hypothesis that the
meta KNN model just assigns more weight to the base KNN clas-
sifier. Otherwise, we would have observed less variation between
the scores of Weighted Voting and UCM. The relative performance
of the two methods with respect to Majority Voting leads us to the
same conclusion.
In Figure 6, the accuracy difference between UCM and Majority
Voting is plotted against the accuracy difference between Weighted
Voting and Majority Voting. If there were a strong connection be-
tween the meta KNN model and the base KNN classifier, there
should be a noticeable correlation. However, the line of best fit is
nearly horizontal and the 𝑅2 score is very low at 0.0052.
While it is hard to reject any relation between the meta model and
the base classifier of the same algorithm, our observation about
their little relevance may increase the explanatory power of the
unlabeled set’s distribution with regard to the performance of UCM.
An interesting phenomenon is that 5 out of the 6 datasets on which
UCM beats Majority Voting have more than 1000 instances and on
only 2 datasets with more than 1000 records does Majority Voting
perform better. Figure 7 plots the accuracy difference between UCM
and Majority Voting against the number of instances in a logarith-
mic scale due to the wide range of the volumes of data. There seems
to be an increasing relationship between the number of records and
the performance of UCM against Majority Voting.
If we revisit the two assumptions made by UCM as discussed in
section 3.1, more data may better satisfy both of them. That is it
can enhance the diversity of the ensemble and the authenticity of
the unlabeled set’s distribution. This is because we are applying
cross-validation and more samples in the complete dataset mean
more samples in the “unlabeled” validation set. However, because
the satisfaction of the first assumption also benefits Majority Voting
and we are concentrating on the performance difference between
Majority Voting and UCM, the pattern displayed in Figure 7 should
be better explained by the second assumption. This verdict justi-
fies dropping the outlier on the far right of Figure 7. This outlier
corresponds to dataset 16 - the letter recognition dataset. It gives
information about images of the 26 capital letters in the English
alphabet written in different fonts. The nature of this dataset and its
data volume indicate that its training set contains little noise while
the second assumption asserts that the unlabeled set should be less
noisy than the training set in general. When this outlier is removed,
a sharper line of best fit is shown in Figure 8 with a moderate 𝑅2
score of 0.1126. This result suggests the validity of the second as-
sumption about the utility of the unlabeled set’s distribution, which
can be enriched with more data.

5 CONCLUSION AND FUTUREWORK
Anovel method, called UCM, has been proposed. Under this method,
samples in the unlabeled set are pseudo-labeled based on a Major-
ity Voting ensemble’s consensus. If consensus is not reached, the
sample is categorized as "Unknown," which serves as another class.
A meta KNN model is then fit on the pseudo-labeled set and its
predictions are combined with those of the voting ensemble to
generate the final predictions for the unknown points.
UCM was applied on 23 benchmark datasets from the UCI repos-
itory. Its performance was compared with Majority Voting. The
results show that Majority Voting achieved a higher accuracy and
𝐹1 score on more than half of the datasets. Its average score is also
higher than that of UCM in both metrics. Nevertheless, this out-
come does not necessarily reject the validity of UCM’s theoretical
motivation concerning the useful information of the unlabeled set’s
distribution. A closer look at the results reveals a positive trend be-
tween the number of samples and the performance discrepancy of
the two methods. This may imply that UCM is more suitable when
the unlabeled set has a more representative distribution than the
training set, which can be determined by the number of instances
and the nature of the data.
Future work on UCM includes but is not limited to:

(1) Testing UCM on medium-sized datasets (between 1000 and
5000 records) and increasing the size of the validation sets
to meet UCM’s second assumption.

(2) Weighting the probabilities addition of the meta model by
quantifying and estimating the noise in the unlabeled set as
well as the diversity of the ensemble. We may also experi-
ment with another algebraic operation other than addition.

(3) Examining the potency of UCM as a tie breaker and evaluat-
ing it against the baseline of random guessing.

(4) Tuning the certainty threshold based on the number of
classes. For example, a class having three out of six votes
may be enough for problems with more than 10 classes. Ad-
justing this hyperparameter has brought about a 3% increase
in accuracy for UCM on some datasets.

(5) Using a support function where each of the base classifiers
produces a probability prediction. Such an output will align
more with the prediction provided by the meta model.

(6) Trying other diversification strategies like bootstrapping.
Some of these strategies will allow a higher number of base
classifiers.

(7) Trying other algorithms (e.g. SVM) for the meta model in
place of KNN.

ACKNOWLEDGMENTS
I would like to thank Dr. David Barbella and Dr. Charlie Peck for
their detailed feedback during the development of this research
project.

REFERENCES
[1] Luís A. Alexandre, Aurélio C. Campilho, and Mohamed Kamel. 2001. On com-

bining classifiers using sum and product rules. Pattern Recognition Letters 22, 12
(2001), 1283–1289.

[2] Adam Blum. 1992. Neural networks in C++ an object-oriented framework for
building connectionist systems. John Wiley & Sons, Inc.



CS488 Senior Capstone, Fall 2021, Earlham College Dong Cao

[3] Robert Burduk. 2012. Recognition task with feature selection and weighted
majority voting based on interval-valued fuzzy sets. In International Conference
on Computational Collective Intelligence. Springer, 204–209.

[4] Alican Dogan and Derya Birant. 2019. A weighted majority voting ensemble
approach for classification. In 2019 4th International Conference on Computer
Science and Engineering (UBMK). IEEE, 1–6.

[5] Yoav Freund and Robert E. Schapire. 1997. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and system
sciences 55, 1 (1997), 119–139.

[6] Shenkai Gu and Yaochu Jin. 2017. Multi-train: A semi-supervised heterogeneous
ensemble classifier. Neurocomputing 249 (2017), 202–211.

[7] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[8] Asma Kausar, M. Ishtiaq, M. Arfan Jaffar, and AnwarM.Mirza. 2010. Optimization
of ensemble based decision using PSO. In Proceedings of the World Congress on
Engineering, Vol. 1. IAENG, 1–6.

[9] Josef Kittler, Mohamad Hatef, Robert P.W. Duin, and Jiri Matas. 1998. On com-
bining classifiers. IEEE transactions on pattern analysis and machine intelligence
20, 3 (1998), 226–239.

[10] Ludmila I. Kuncheva and Juan J. Rodríguez. 2014. A weighted voting framework
for classifiers ensembles. Knowledge and Information Systems 38, 2 (2014), 259–
275.

[11] Florin Leon, Sabina-Adriana Floria, and Costin Bădică. 2017. Evaluating the effect
of voting methods on ensemble-based classification. In 2017 IEEE International
Conference on INnovations in Intelligent SysTems and Applications (INISTA). IEEE,
1–6.

[12] Yasir Mehmood, Muhammad Ishtiaq, Muhammad Tariq, and M. Arfan Jaffar. 2010.
Classifier ensemble optimization for gender classification using genetic algorithm.
In 2010 International Conference on Information and Emerging Technologies. IEEE,
1–5.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[14] Jesper E. Van Engelen and Holger H. Hoos. 2020. A survey on semi-supervised
learning. Machine Learning 109, 2 (2020), 373–440.

[15] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference, Stéfan van derWalt and Jarrod
Millman (Eds.). 56 – 61. https://doi.org/10.25080/Majora-92bf1922-00a

[16] Michał Woźniak, Manuel Grana, and Emilio Corchado. 2014. A survey of multiple
classifier systems as hybrid systems. Information Fusion 16 (2014), 3–17.

[17] Zhi-Hua Zhou and Ming Li. 2005. Tri-training: Exploiting unlabeled data using
three classifiers. IEEE Transactions on knowledge and Data Engineering 17, 11
(2005), 1529–1541.

[18] Xiaojin Jerry Zhu. 2005. Semi-supervised learning literature survey. (2005).

A SOURCE CODE
The source code of this research project can be accessed via this
hyperlink. Please see the enclosed README for instructions on
how to use the code. The linked repository also includes metadata
about the benchmark datasets and the results reported in this paper.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://code.cs.earlham.edu/dcaohuu18/ucm

	Abstract
	1 Introduction
	2 Related Work
	2.1 Voting Methods
	2.2 Semi-supervised Learning

	3 Unlabeled Consensus Modeler
	3.1 Theoretical Motivation
	3.2 Design and Implementation

	4 Experiment and Evaluation
	4.1 Evaluation
	4.2 Results

	5 Conclusion and Future Work
	Acknowledgments
	References
	A Source Code

