
A Model for Measuring the Difficulty of a Maze and a System for
Generating Mazes of a Custom Difficulty using a Neural Network

and Modified Prim’s Algorithm
Liam Peachey

ljpeach18@earlham.edu
Department of Computer Science

Earlham College
Richmond, Indiana

ABSTRACT
Mazes as a problem domain have wide applications, from art and
games to testing decision algorithms. While there has been focus
on the topology of mazes, recent work on generating specific levels
of difficulty of maze is more scant. Additionally, existing models for
analyzing a maze’s difficulty may not accurately reflect difficulty
for both humans and computers, with some mazes classified as
more difficult appearing easier to a human solving the maze. I
propose research exploring different methods for analyzing and
classifying the difficulty of mazes, producing a unified model that
reflects similar difficulty for humans and computers, followed by
designing a neural network that guides maze generation to produce
mazes of a specified difficulty rating.

.

1 INTRODUCTION
Mazes are a well known and easily understood problem domain
in AI research. They have been produced throughout history for
purposes of entertainment, defense, and decoration. The structure
of a maze impacts the ease of which a human or algorithmic agent
may navigate the maze. Either a human or an AI could easily solve
a maze that is just a straight line to the goal, but it might be easier
for a human to spot overarching patterns within a maze than for an
algorithm. How would such a maze be classified? Models exist by
which the difficulty of a maze may be estimated, but these have pri-
marily been aimed at algorithmic agents [6]. Bellot et al.’s approach
integrates McClendon’s difficulty analysis, and produces a measure
of how fun a maze is, integrating some of the ways humans scan
mazes [1].
This research intends to improve upon and unify models by which
the difficulty of a maze may be estimated in a way that takes both
difficulty for humans and for an AI into account. I will also produce
an algorithm that will generate mazes using a desired difficulty of
the output maze to guide generation through the use of a neural
network to transform a difficulty rating into a series of parameters
that will affect how the maze is generated. The neural network will

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CS388 Methods for Research and Dissemination, , Earlham College
© 2022 Association for Computing Machinery.

be trained using varying measures of difficulty, with the resulting
mazes being tested using Gabrovšek’s method for measuring the
difficulty of a maze through the use of agents to determine which
difficulty models produce the most accurate ratings [2].
This paper is structured to provide a detailed outline of the pro-
posed project. The first section details the background of the field
and techniques that will be employed in the research. The second
section will provide a rough plan of the design and implementation
ideas. The third section will outline major risks within the project.
The final section will provide a timeline for the project.

2 BACKGROUND
Mazes at their cores are cell graphs. The edges of the graph can be
traversable, or not. Those that are not are considered walls. In a
typical maze, cells consist of four edges, forming a grid. However,
this representation can be bent to create other structures as well [5].
For the purposes of this research, I will be focusing on the standard
four neighbor cell graph. Perfect mazes are defined as mazes that
have a singular path connecting any two cells [1]. While not all
mazes are required to have this attribute, it does allow for easy maze
generation through the use of spanning tree generating algorithms
[3]. As a result, maze generation typically makes use of existing
algorithms for generating these spanning trees.
As mazes are well known, there are already a number of algorithms
to generate mazes. The Recursive Backtracking method chooses
a cell on the graph, marks it visited, adds it to a stack, is marked
as visited, and then chooses a random neighbor that has not been
visited to join with. That neighbor becomes the next active cell, and
the process repeats until there are no unvisited neighbors around
the active cell. At this point, the current cell is abandoned, and a
new cell is popped from the stack. Once the stack is empty, the al-
gorithm halts [7]. This method is essentially a depth first traversal.
Kruskal’s algorithm works by separating the graph into sets and
then joining them back together one cell at a time. When two cells
are joined, they become part of the same set. Cells are only joined
with cells in different sets. Once the whole graph is part of the same
set, the algorithm completes [7].
Prim’s algorithm is similar to the recursive backtracking algorithm.
It also makes use of a frontier to connect new cells. Instead of pop-
ping the next cell off the stack however, it randomly chooses a cell
from within the frontier, and it then adds that cell to the "visited"
or "in" group, and adds unvisited neighbors to the frontier [7]. This
is the approach that this research will be building off of.



CS388 Methods for Research and Dissemination, , Earlham College Liam Peachey

Bellot et al. outlines existing methods for assessing the difficulty
of mazes, and produces their own model for calculating how fun
a maze is [1]. McClendon’s difficulty ratings, which Bellot et al.
used and refined in their model, is based on the complexity of the
solution path multiplied by the complexity of all branches in the
maze [6]. Bellot et al.’s approach takes into account the number of
what they refer to as "non-significant" walls [1]. According to them,
mazes with a low number of non significant walls and the highest
difficulty as rated by the McClendon model are the most fun.
Finally, Gabrovšek uses a number of agents to explore a maze, using
their performance to determine which algorithms produce the most
difficulty mazes [2]. Bellot et al. also produced two hybrid algo-
rithms that they used for generating mazes that they determined
to be more fun [1]. However, this and many other works failed to
create systems of generating mazes of a specified difficulty. Susanto
et al. produced a genetic algorithm for generating a type of maze
[8]. Their mazes are not the usual cell graph type, and are specific
to the game they developed. They encoded patterns into genes that
would then be used within the genetic algorithm [8]. Their method
also seems to be suited to generating higher complexity levels. The
goal of our algorithm is to produce mazes of a specific complexity
without long training cycles at runtime, so a genetic algorithm like
this one would not be a good fit.

3 DESIGN AND IMPLEMENTATION
This project will make use of a neural network to process a difficulty
rating, outputting parameters for an altered Prim’s algorithm maze
generator. Once the parameters are determined, the algorithm will
generate a maze, which will be assessed by a difficulty model. This
result will be used to grade the neural network.
The overall framework of the project is outlined in Figure 1. Input
difficulty is the desired difficulty of the maze. This is passed to the
maze generator neural network (MGNN) which will return a set
of parameters for the main algorithm in an attempt to produce a
maze that matches. The goal difficulty and generated maze is then
passed to the difficulty model, which analyzes the maze difficulty.
The MGNN then uses this value to grade, and proceeds to the next
generation. This describes the learning loop. After this is completed,
the algorithm may be used to generate a pool of mazes for agent
functions to complete. The performance of these functions is then
compared with the desired difficulty of the maze, as well as the
difficulty model’s assessment of the maze, and compiled as perfor-
mance data.
The difficulty model will factor in the work of Bellot et al. to create
measure of how fun a maze is, as well as re-examining McClen-
don’s difficulty formula, which is already factored into Bellot et
al.’s formula, to look for additional factors by which to determine
a maze’s theoretical difficulty [1, 6]. Additionally, I will be using
Gabrovšek’s method of employing maze solving agents to deter-
mine maze difficulty and complexity [2]. I will be adding additional
agents however, including heuristic searches, such as A* search,
greedy, etc. for more accurate measures as to how a computer may
solve a maze as well as how to push the model further.
The neural network will use the difficulty model I develop in the
first few weeks of the project as feedback. Parameters will include
but may not be limited to the coordinates of the first cell in the

maze that is visited, number of starting points, the "age" of the last
visited cell to explore again from when hitting a dead end, direc-
tional biases, and maximum ratio of certain types of intersection
(outlined by Kim and Crawis) to the maze’s size [4]. Other factors
will likely be added or removed during the course of the project.
The core of the algorithm will be based on Prim’s algorithm for
maze generation [7]. Prim’s algorithm makes use of a frontier built
through cell discovery, which should allow for more control over
determining how the maze will grow.
This work will be evaluated by comparing the desired difficulty
rating of mazes generated, actual difficulty ratings as based on the
models used, and the performance of the agent functions used later
on. We will test multiple difficulty models for training the MGNN,
and analyze all of them to see which works best with the Prim’s
algorithm system we develop.

Figure 1: Project Framework

4 MAJOR RISKS
Neural networks are fairly new to me, so I will need to be able to
reacquaint myself with them, and properly implement this when
the time comes, and it will likely involve time during other sections
to learn before beginning the development period. Additionally, as



A Model for Measuring the Difficulty of a Maze and a System for Generating Mazes of a Custom Difficulty using a Neural Network and Modified Prim’s AlgorithmCS388 Methods for Research and Dissemination, , Earlham College

the neural network will be based on the difficulty model, the model
must be complete and fairly functional before I can fully implement
begin work on training the neural network. I plan to make my work
as modular as possible, so I can potentially circumnavigate this
issue by having a backup maze difficulty model that I can substitute.
This solution would also provide additional data for assessing the
performance of my model. Finally, implementing additional maze
generation and solving algorithms will take time and effort to un-
derstand and write. Working them into the overarching structure
of my code may also be challenging. I have allotted time early on
to work on these so that if they take longer than expected, or if
unexpected issues arise from them I should be able to compensate.

5 TIMELINE

Week 1

1. Build maze domain
2. Implement McClendon and Bellot et al.’s
difficulty and fun models.
3. Implement Prim’s algorithm, recursive
backtracking, and hunt and kill algorithms.

Week 2
1. Tweak difficulty models, and factor in other
ways of measuring mazes
2. Implement A*, greedy, and random walk agents.

Week 3

1. Generate a set of mazes from each algorithm
2. Run difficulty analysis on mazes
3. Have agents complete the mazes, record details
on performance of each for comparison with the
predicted difficulty
4. Submit first draft of paper analyzing accuracy
of model

Week 4

1. Tweak difficulty model as needed
2. Implement maze generation algorithm that will
be used with the Neural Network
3. Implement additional agents

Week 5

1. First release of software, limited to difficulty
model
2. Begin work on neural network using difficulty
model to measure fitness

Week 6 Begin training the algorithm

Week 7
1. Tweak parameters and neural network
2. Train additional neural networks using other
difficulty models

Week 8

1. Generate mazes using algorithm
2. Run and collect data from agent functions on
generated mazes
3. Perform analysis on expected difficulty, actual
difficulty, and difficulty according to performance.

Week 9
1. Record findings and update/expand paper to
match current state of findings
2. Submit second draft of paper

Week 10
1.Tweak algorithms/do more training
2. Implement more agents/Implement other
difficulty analysis techniques

Week 11 Collect additional data and compare difficulty
model with other analysis techniques

Week 12 Begin work on poster. Gather data and visuals.

Week 13 Work through final touches, refine software for
ease of use/testing

Week 14 First draft of poster due

Week 15

1. Add final touches to paper, software, and poster
2. Submit final draft of paper
3. Release final software
4. Present Poster



CS388 Methods for Research and Dissemination, , Earlham College Liam Peachey

6 ACKNOWLEDGEMENTS
Thank you to David Barbella for his time, patience, feedback and
willingness to help throughout the course of producing this pro-
posal.

REFERENCES
[1] Victor Bellot, Maxime Cautrès, Jean-Marie Favreau, Milan Gonzalez-Thauvin,

Pascal Lafourcade, Kergann Le Cornec, Bastien Mosnier, and Samuel Rivière-
Wekstein. 2021. How to generate perfect mazes? Information Sciences 572 (2021),
444–459.

[2] Peter Gabrovšek. 2019. Analysis of maze generating algorithms. IPSI Transactions
on Internet Research 15, 1 (2019), 23–30.

[3] Paul Hyunjin Kim. 2019. Intelligent maze generation. The Ohio State University.
[4] Paul Hyunjin Kim, Jacob Grove, Skylar Wurster, and Roger Crawfis. 2019. Design-

centric maze generation. In Proceedings of the 14th International Conference on the
Foundations of Digital Games. 1–9.

[5] Xue Li and David Mount. 2016. Spherical Maze Generation. (2016).
[6] Michael Scott McClendon et al. 2001. The complexity and difficulty of a maze. In

Bridges: Mathematical Connections in Art, Music, and Science. Citeseer, 213–222.
[7] Ms Shivani H Shah, Ms Jagruti M Mohite, AG Musale, and JL Borade. 2017. Survey

Paper on Maze Generation Algorithms for Puzzle Solving Games. International
Journal of Scientific & Engineering Research 8, 2 (2017), 1064–1067.

[8] Evan Kusuma Susanto, Rifqi Fachruddin, Muhammad Ihsan Diputra, Darlis Heru-
murti, and Andhik Ampuh Yunanto. 2020. Maze Generation Based on Difficulty
using Genetic Algorithm with Gene Pool. In 2020 International Seminar on Applica-
tion for Technology of Information and Communication (iSemantic). IEEE, 554–559.


	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	4 Major Risks
	5 Timeline
	6 Acknowledgements
	References

