Research Proposal A GUI Bioinformatic Workflow Management
tool with a basis in OpenWDL

Tra-Vaughn M.C. James
Earlham College
Richmond, Indiana
tjames19@earlham.edu

ABSTRACT

Bioinformatics is an interdisciplinary field between biology, com-
puter science and statistics, in which software is able to augment,
and analyze biological data. To convert this data into useful in-
formation the use of various tools, parameters, and dynamically
changing reference data is required [16]. As a result, workflow man-
agement system such as Shakemake and OpenWDL were created
to develop workflows that are scalable, repeatable and shareable.
Such tools have become pivotal within large-scale labs, saving
bioinformaticians time, resources and streamlining the analysis
process. However, many of these workflow managers are bespoke
in nature, limited to only creating workflows for specific sects of
research. Moreover, newer workflow management systems, often
have a steep learning curve, providing unneeded difficulty and a
massive time cost. I propose a GUI workflow management tool that
is easy to learn and dynamic in nature, allowing for the creation of
workflows that can be applied to mainstream research in genomics
and RNA-sequencing.

KEYWORDS

Bioinformatics, workflow, workflow manager, workflow manage-
ment, workflow management tool, OpenWDL, WDL, Workflow
Description Language

ACM Reference Format:

Tra-Vaughn M.C. James. 2022. Research Proposal A GUI Bioinformatic
Workflow Management tool with a basis in OpenWDL . In Proceedings
of ACM Conference (Conference’17). ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Today, Bioinformatics is an evolving field, in which computing
resources have become more powerful, readily available and work-
flows have increased in complexity. New workflow management
tools (WMT) attempt to develop software that fully harnesses this
computational power, creating intuitive implementations utilizing
machine learning techniques. This streamlines the design of com-
plex workflows. However, overarching problems still remain that
newer workflow management tools do not fully address: they are

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

too specific to particular use cases, and they present a great learning
curve for users unfamiliar with computing environments. Many
implementations require one to spend copious amounts of time un-
derstanding the tool and adjusting already existing frameworks to
ones needs, creating frustration and inefficiency. This problem is ex-
perienced by both novice and experienced bioinformaticians alike.
Using OpenWDL, a Workflow Description Language, as the basis, I
seek to develop an open in use workflow management tool coupled
with a GUI interface. As OpenWDL is a widely known WMT, its
familiarity will aid in my implementations usability. Additionally,
the GUI interface will present a more welcoming environment than
that of a command line interface in which many WMT’s often em-
ploy. To assess the effectiveness of my implementation, I will then
assess it to other WMT’s, comparing its usability and openness
to other bioinformatic pipeline managers such as SnakeMake and
NextFlow.

2 BACKGROUND

2.1 OpenWDL

Originally created by the Broad Institute for the purposes of genome
analysis pipelines, OpenWDL, a Workflow Description Language
(WDL), has evolved to much more than its original intent. It pro-
vides a "way to specify data processing workflows with a human-
readable and -writeable syntax. It makes it straightforward to define
analysis tasks, chain them together in workflows, and parallelize
their execution."[5] WDL requires an execution engine to run, being
compatible with engines such as Cromwell, MiniWDL and dxWDL.
It further supports Python, JavaScript, and Java. Due to this and
OpenWDL becoming an open source community, it has become the
basis for a slew of other WMT’s, workflows, as well as an inspira-
tion for new WMT implementations. The various WMT’s utilizing
OpenWDL, coupled with its familiarity and widespread use within
the field, makes OpenWDL a prime candidate for the basis of my
own implementation.

Cromwell is a "workflow execution engine that simplifies the
orchestration of computing tasks needed for genomics analysis"
[6], used to execute WDL scripts. It is now an open-sourced project,
but was also originally developed by the Broad Institute. Cromwell
can run on a variety of systems, including local and cloud-based
services e.g. AWS (Amazon Web Services). This capability is shown
through the use of the Terra platform, which can run WDL scripts,
Terra includes a built-in Cromwell server that "interprets your WDL
workflow script, transforms it into batches of individual analysis in-
structions, and finally dispatches it to a Google Cloud service called
Pipelines API for execution" [3]. One of the most powerful features
of Cromwell with WDL is the ability to create sub-workflows. This
allows the "execution of an entire workflow as a step in a larger

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

workflow, when a workflow calls another workflow, that second
workflow is called a sub-workflow." [2] These sub-workflows can
contain within themselves other sub-workflows, thus, allowing the
workflow nesting, which aids in workflow reuse. [7]

Google Cloud

Worker VM

Workflow Cromwell

+Inputs

{JSON}
—_—

Container
Data (GCS)

Figure 1: An overview of Cromwell with Terra. (https:
/13qim1p3jo50i2s787c216eqb-wpengine.netdna-ssl.com/wp-
content/uploads/2020/11/cromwell-gcp-overview.png).

MiniWDL, developed by Mike Lin, is a newer WDL execution
engine.It adds "developer productivity tools such as a local runner
and source code linter, a python library for programmatic access to
its WDL parser, static analysis framework, and run time, system."[1].
It reuses Docker’s "built-in Swarm mode for many aspects of con-
tainer scheduling, rather than re-implementing parallel resource
allocation and queuing logic. MiniWDL is a sound basis for building
"WDL tools and platform-specific runners".[1]

Compute (Analysis) Optional Component

mini R cocie 3
‘ SWA M Docker Hub
— . | {Wdl} & =
et ;{/

De'au!l container (Optional)
Includes Docker Task Container,
Swarm ie. GATK, etc...

INPUT Data OUTPUT Data

I
INPUTS WDL Job \Dgs

Folder Folder Folder

INPUTS CONFIG OUTPUTS

Figure 2: An overview of MiniWDL. (https:/raw.
githubusercontent.com/openwdl/learn-wdl/master/images/
miniwdl-dev.png).

As aforementioned OpenWDL requires an execution engine
in order to run, the most well known options are Cromwell and
MiniWDL. Each engine, while providing the same service, have
different methods of implementation and different features in which
holds certain advantages. By juxtaposing both engines I can ascribe
one or the other for a user, in their own particular circumstance.
For instance, if a user seeks to run their workflow within the field,
Cromwell would be a more suitable engine as it allows them to
leverage more computational power in the cloud. Or, if a user is

Trovato and Tobin, et al.

running a smaller workflow that does not necessarily need that
much computational power, the lightweight MiniWDL maybe a
better option. By leveraging the features of each execution engine I
can indirectly increase the usability of my WMT implementation.

3 RELATED WORK
3.1 BioShake MIGNON

Many bioinformatic workflow managers use and build upon ex-
isting workflow systems to address specific issues with the tool
or to create a new workflow management system for a specific
application. These workflow managers allow for the advancement
of new workflow technologies while receiving the robust and time
tested implementation of a preexisting workflow system. Bioshake,
is an Embedded Domain Specific Language (EDSL) built in Haskell.
It is built on top of Shake, another build tool implemented as an
EDSL in Haskell [8]. It inherits Shake’s, "reporting features, robust
dependency tracking, and resumption capabilities" [8]. However,
unlike Shake, BioShake supports forward specification of work-
flows. One of the most important aspects of Bioshake is its ability
to prevent errors before execution, which are caught by their type
system. Moreover, its interchangeability to use a different back end,
such as Toil or Cromwell, allows for "the leverage of the cloud
and containerisation facilities” of them both. Bioshake provides a
good example implementation I can analyze in order to understand
methods in which WDL can be changed, but also, methods of how
to utilize existing technologies to advance the software. = While
more specific to RNA-Seq experiments, MIGNON, uses WDL as un-
derlying framework [10]. The steps of the workflow are "wrapped
into WDL tasks that must executed on an independent unit of con-
tainerized software through the use of docker containers. Similar
to Bioshake it can also be utilized with cloud based services like
cromwell, but also with personal and HPC computers. MIGNON
was tested by 6 different human data-sets (total of 42 samples) in
which Cromwell and docker coupling produced a fast and easy
to deploy workflow. MIGNON, serves as a reference for ways to
leverage Cromwell or other execution engines for WDL, that I can
use also use to enhance my own implementation.

3.2 aCLImatise a Tool to Aid in WDL Workflow
Creation

While there exists a multitude of workflow management technolo-
gies there are many others used to advance and simplify existing
ones. These tools provide necessary advancements to one seeking
to better their workflow software without the need to move on
to a completely new product. One such tool is aCLImatise, a tool
"designed to streamline the creation of new portable workflows by
providing automatically generated tool definitions for any tool with
a conventional command-line interface" [14]. aCLImatise initially
executes the command "of interest by trying a variety of help flags,
storing the standard output from each". The results are then ex-
tracted using Parsing Expression Grammar. Finally, the data model
is outputted into a WDL workflow format. A tool definition basi-
cally describes a piece of software and thus has no effect on the
creation of a workflow.

https://3qim1p3jo50i2s787c216eqb-wpengine.netdna-ssl.com/wp-content/uploads/2020/11/cromwell-gcp-overview.png
https://3qim1p3jo50i2s787c216eqb-wpengine.netdna-ssl.com/wp-content/uploads/2020/11/cromwell-gcp-overview.png
https://3qim1p3jo50i2s787c216eqb-wpengine.netdna-ssl.com/wp-content/uploads/2020/11/cromwell-gcp-overview.png
https://raw.githubusercontent.com/openwdl/learn-wdl/master/images/miniwdl-dev.png
https://raw.githubusercontent.com/openwdl/learn-wdl/master/images/miniwdl-dev.png
https://raw.githubusercontent.com/openwdl/learn-wdl/master/images/miniwdl-dev.png

Research Proposal A GUI Bioinformatic Workflow Management tool with a basis in OpenWDL

4 DESIGN AND IMPLEMENTATION

The development approach of my software implementation is com-
prised of two parts/implementations. The first implementation, the
GUI interface, deals with the design and creation of my GUI inter-
face as well as a small back end to test it. The Second, the workflow
streamlining implementation, deals with applying a method, which
can be used to augment and streamline the workflow creation pro-
cess. As a means to further optimize my software, I will compare
the performance and features of both Cromwell and MiniWDL exe-
cution engines with my software ensuring compatibility with both.
Thus, giving users who are familiar with one engine, but not the
other, the ability to use either.

4.1 GUI Implementation

Within the GUI interface I plan on utilizing a Java library such as
Swing or JavaFX for creation of the GUI interface. The planned
design of the GUI will support the following capabilities:

o The user, upon opening the application, will be greeted with
a welcome screen that describes the basic functionality of
the GUL

o There will be an add button that will allow the user to choose
what Bioinformatic software they seek to use e.g. BLAST
and Quime2.

o A search bar will be in the middle of the screen allowing the
user to type the beginning of a command and then options
for that command will be listed out on the screen, allowing
the user to specify values and certain criteria.

e A place in workflow button, that will allow the user to add
commands to there workflow.

e Drop Box for dropping in important files.

o A save button that will allow the user to save the workflow
they have created.

e A run button to run the workflow.

e Optional Addition: Output section that lists out the output
files. Allows the use to view the contents of each one.

e Optional Addition: A Type Command box, the user can type
the cli (command line interface) version of the command if
so desired.

When the user runs their workflow, selections made within the GUI
will transfer to a WDL file, which will then be run by the workflow
execution engine of there choosing.

4.2 Workflow Streamlining Implementation

Within the Workflow Streamlining Implementation I seek to utilize
and configure a parser. When a user types a specific command from
a particular piece of software, the program will list out and display
the options and parameters of that command in a GUI format, using
buttons, scrollers, checkboxes, etc, as a means to adjust each one.
Thus giving the user discretion to specify and declare all of the
supported parameters for that command to their needs. ~ Secondly,
if time allows, I seek to implement a software method similar to
that implemented in BioShake, that will allow the user to prevent
errors before execution or stop execution at particular point in
the workflow, giving the user the ability to correct or adjust any
mistakes they may have made.

Conference’17, July 2017, Washington, DC, USA

‘ ‘ Add Workflow
Tool Button

‘ Quime ‘

‘Samtoo\s ‘ Bowtie ‘

Command Parameters

L]
L]

List of Commands already
Created View

=C O

l:l ‘ Do you want to parse specific reads

‘ Would you like to output to logfile ‘

‘ ‘ Drop Input

Flles Here
Add
Command

Figure 3: An Example Template of what my GUI may look
like.

4.3 Evaluation Plan

To provide a good juxtaposition of my implementation, Nextflow,
and Shakemake, I will follow the evaluation procedures of Mainzer

and colleagues. Using a variety of scripts they compared CromWell/WDL,

Nextflow, and Swift/T using criteria such as [?]:

o User interface: the means by which the user interacts with
the software.

o Containerization support: methods to virtualize an OS to
run on a host without separate virtual machines.

o Check-pointing: ability to save workflow state periodically,
allowing for rerun from it upon failure.

e Caching: ability to store frequently used data in memory to
reduce data retrieval time.

e Portability: usability of software in a variety of different
operating environments.

o Distributed execution engine: makes the computer cluster
look like a single machine.Circumvents the use of task sched-
uler and resource manager.

e Modularity: program implemented as a library of modules,
allowing for design flexibility and maintainability.

e Error handling strategy: functionalities to address and re-
solve errors that arise during program execution

o Parallelization: methods to distribute data among multiple
compute nodes, allowing many instances of the same func-
tion to run at the same time.

e SPARK support

I will base my evaluation on similar criteria, excluding SPARK
support, but adding other criteria such as ease of use. As all of these

Conference’17, July 2017, Washington, DC, USA

criteria are highly considered when new or novice Bioinformati-
cians chose a WMT, this evaluation method will ensure I compare
my implementation to others in a manner that is relevant to what
users actually seek. Moreover, the comprehensive nature of this
evaluation ensures that I unbiasly and equally judge my own WMT
as compared to NextFlow and Shakemake.[?].

5 MAJOR RISKS

As I am using new to using WDL, a potential risk is the learning
curve required to understand the program and its workings as
well as the time it takes to do so, rendering it a hindrance to my
overall plan. Additionally, as OpenWDL is created in Java, there
is a slight Java learning curve. Although I am familiar with Java,
my work within it is limited. I may have to take a brief amount
of time refreshing my knowledge, and comprehending its other
language features. Finally, there is the challenge of creating the GUI
interface. Even though various Java frameworks like JavaFX and
Swing make development easier, to make it simple to understand
and easy to use, as well as the overall planning of it will take some
time to effectively develop.

6 ACKNOWLEDGEMENTS

My appreciation is extended to David Barbella for his assistance in
helping me in articulating my proposal and research basis, as well
as Charlie Peck’s assistance in acquiring sources.

REFERENCES

[1] 2019. miniwdl, a runtime and developer toolkit for the bioinformatics Workflow De-
scription Language. https://medium.com/czi-technology/miniwdl- 17ecdaf40944
[2] 2020. Cromwell Subworkflows. https://cromwell.readthedocs.io/en/stable/
SubWorkflows/
[3] 2020. The freedom of portable workflows. https://terra.bio/the-freedom-of-
portable-workflows/
[4] 2020. MiniWDL. https://miniwdl.readthedocs.io/en/latest/
2020. OpenWDL. https://openwdl.org/#three
[6] 2021. Cromwell on AWS. https://aws.amazon.com/government-education/
cromwell-on-aws/#:~:text=Cromwell%20is%20a%20workflow%20management,
%2C%20based%20in%20Cambridge%2C%20MA.&text=Cromwell%20is%20a%
20workflow%20execution, tasks%20needed%20for%20genomics%20analysis.
[7] 2021. Cromwell Workflow Manager and WDL Workflows. https://sciwiki.fredhutch.
org/compdemos/Cromwell/
[8] Justin Bed6. 2019. BioShake: a Haskell EDSL for bioinformatics workflows. Peer}
7 (2019), e7223.
[9] Xiaoling Chen and Jeffrey T Chang. 2017. Planning bioinformatics workflows
using an expert system. Bioinformatics 33, 8 (2017), 1210-1215.
[10] Martin Garrido-Rodriguez, Daniel Lopez-Lopez, Francisco M Ortuno, Maria Pefia-
Chilet, Eduardo Muiioz, Marco A Calzado, and Joaquin Dopazo. 2021. A versatile
workflow to integrate RNA-seq genomic and transcriptomic data into mechanistic
models of signaling pathways. PLoS computational biology 17, 2 (2021), €1008748.
Michael Jackson, Edward Wallace, and Kostas Kavoussanakis. 2020. Using rapid
prototyping to choose a bioinformatics workflow management system. bioRxiv
(2020).
Samuel Lampa, Martin Dahl, Jonathan Alvarsson, and Ola Spjuth. 2019. SciPipe:
A workflow library for agile development of complex and dynamic bioinformatics
pipelines. GigaScience 8, 5 (2019), giz044.
[13]]ComparitiveMainzer LS Mainzer. [n.d.]. Comparative Analysis of Genomic
Sequencing Workflow Management Systems. https://swift-t-variant-calling.
readthedocs.io/en/latest/_downloads/poster_ISCB_2018.pdf
Michael Milton and Natalie Thorne. 2020. aCLImatise: automated generation of
tool definitions for bioinformatics workflows. Bioinformatics 36, 22-23 (2020),
5556-5557.
Francesco Strozzi, Roel Janssen, Ricardo Wurmus, Michael R Crusoe, George
Githinji, Paolo Di Tommaso, Dominique Belhachemi, Steffen Méller, Geert Smant,
Joep de Ligt, et al. 2019. Scalable workflows and reproducible data analysis for
genomics. In Evolutionary Genomics. Springer, 723-745.

&

[11

[12

[14

[15

Trovato and Tobin, et al.

[16] Laura Wratten, Andreas Wilm, and Jonathan Géke. 2021. Reproducible, scalable,
and shareable analysis pipelines with bioinformatics workflow managers. Nature
methods 18, 10 (2021), 1161-1168.

A ONLINE RESOURCES

Git repositories of OpenWDL, Cromwell, MiniWDL and various
open source workflow management tool implementations. Intro-
ductory series of getting started with OpenWDL.

(12] [10] [9] [11] [4] [15] [5]

https://medium.com/czi-technology/miniwdl-17ecdaf40944
https://cromwell.readthedocs.io/en/stable/SubWorkflows/
https://cromwell.readthedocs.io/en/stable/SubWorkflows/
https://terra.bio/the-freedom-of-portable-workflows/
https://terra.bio/the-freedom-of-portable-workflows/
https://miniwdl.readthedocs.io/en/latest/
https://openwdl.org/#three
https://aws.amazon.com/government-education/cromwell-on-aws/#:~:text=Cromwell%20is%20a%20workflow%20management,%2C%20based%20in%20Cambridge%2C%20MA.&text=Cromwell%20is%20a%20workflow%20execution,tasks%20needed%20for%20genomics%20analysis.
https://aws.amazon.com/government-education/cromwell-on-aws/#:~:text=Cromwell%20is%20a%20workflow%20management,%2C%20based%20in%20Cambridge%2C%20MA.&text=Cromwell%20is%20a%20workflow%20execution,tasks%20needed%20for%20genomics%20analysis.
https://aws.amazon.com/government-education/cromwell-on-aws/#:~:text=Cromwell%20is%20a%20workflow%20management,%2C%20based%20in%20Cambridge%2C%20MA.&text=Cromwell%20is%20a%20workflow%20execution,tasks%20needed%20for%20genomics%20analysis.
https://aws.amazon.com/government-education/cromwell-on-aws/#:~:text=Cromwell%20is%20a%20workflow%20management,%2C%20based%20in%20Cambridge%2C%20MA.&text=Cromwell%20is%20a%20workflow%20execution,tasks%20needed%20for%20genomics%20analysis.
https://sciwiki.fredhutch.org/compdemos/Cromwell/
https://sciwiki.fredhutch.org/compdemos/Cromwell/
https://swift-t-variant-calling.readthedocs.io/en/latest/_downloads/poster_ISCB_2018.pdf
https://swift-t-variant-calling.readthedocs.io/en/latest/_downloads/poster_ISCB_2018.pdf

Research Proposal A GUI Bioinformatic Workflow Management tool with a basis in OpenWDL Conference’17, July 2017, Washington, DC, USA

Table 1: Timeline

Weeks Tasks

Week 1 -> January 31 - February 6th Learn the basics of OpenWDL and its architecture. Examine other WMTs that
utilize OpenWDL as a reference.

Week 2 -> February 7th - 13th Begin working on first software implementation. Assess and choose GUI li-
braries for Java: SwingX, JavaFX, etc. Develop template of what the GUI should
look like.

Week 3 -> February 14th - 20th Template of GUI should be finalized. Start work on both front and back end

features. Develop and submit first draft of research paper.

Week 4 -> February 21st - 27th Produce and submit first workable software implementation. Basic structure
should be established in which the GUI is working with a simple back-end
despite bugs being present.

Week 5 -> February 28th - March 6th Correct major bugs that break the program. Add additional features as needed
for the front or back-end.

Week 6 -> March 7th - March 13th Limited errors in the Software should be present. Perform tests on entire pro-
gram to ensure it is working correctly.

Week 7 -> March 14th

March 20th First part of Software implementation (GUI interface) should be complete with
minimal to no errors. Begin work on advancing workflow creation capabilities of
software (i.e second part of software implementation). Use sources for reference.

Week 8 -> March 21st - March 27th Evaluate and choose methods and techniques for streamlining Workflow cre-
ation Implement in Code Working on second part of software implementation
all parts of first implementation must be complete.

Week 9 -> March 28th - April 3rd

Continue working on second implementation. Write second Draft of paper.

Week 10 -> April 4th - April 10th Basic infrastructure of second part of software implementation should be es-
tablished or near completion.

Week 11 -> April 11th - April 17th At this point software should be relatively fully functional although bugs are
present.Submit second version of software.

Week 12 -> April 18th - April 24th Second part of software should be completed with a few bugs remaining. Begin
comparison testing between Shakemake and Nextflow

Week 13 -> April 25th - May 1st Second implementation should have minimal to no errors. Testing with Mini-
WDL and Cromwell should be complete

Week 14 -> May 2nd - May 8th Finalize all loose edges and perform overall cleanup of both the first and second
software implementations. By the end of the week all software work should
be completed. First draft of poster should be submitted and final draft of paper
should be in the works.

Week 15 -> May 9th - May 15th Poster, final draft, and software should be completed and submitted. Practice
for poster presentation and present.

	Abstract
	1 Introduction
	2 Background
	2.1 OpenWDL

	3 Related Work
	3.1 BioShake MIGNON
	3.2 aCLImatise a Tool to Aid in WDL Workflow Creation

	4 Design and Implementation
	4.1 GUI Implementation
	4.2 Workflow Streamlining Implementation
	4.3 Evaluation Plan

	5 Major Risks
	6 Acknowledgements
	References
	A Online Resources

