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ABSTRACT

Feature detection with neural networks is a fast growing
field, with big improvements to speed and capability being
made every year. One of the most popular ways to perform
such detection is with a CNN (Convolutional Neural Net-
work), which is a type of deep learning network particularly
adept at detecting features in images. This kind of artificial
intelligence has become important, alongside a number of
applications which can generate huge amounts of image data.
The abundance of data in the modern world, coupled with
the increasing accessibility of machine learning means that
new methods must be explored for ways to efficiently pro-
cess data. This paper proposes a method for testing a range
of operations, comparing their outputs, and determining a
set of algorithms which are most effective for this process.
The goal of this work is to provide insight into various edge
detection operations, and how they can be applied to a CNN
to increase accuracy and efficiency without requiring addi-
tional financial or technical resources.
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1 INTRODUCTION

The motivation for this work is to create a more accessible
method for performing high-level feature detection in images.
Modern surveying and data collection can produce thousands
of images, and the tools that are needed to process such a
volume of imagery are complex and frequently expensive.
The goal is to provide insight into potential methods for
producing high accuracy feature detection without the need
for costly hardware, or cluster computing. Not everyone has
access to industry-grade software and hardware, but this
should never prevent science from being done

Machine Learning is a quickly expanding field in computer
science, and there are many open-source tools available for
setting up neural networks. Tools like Image Al, FastAl, Py-
CNN, and many more, can even be set up to run on a personal
computer, utilizing a CPU, instead of a GPGPU [10] [6] [1]

[16]. These libraries provide new levels of accuracy and flex-
ibility to users.

In this paper, we propose a solution that uses modern
edge detection methods and multiple types of surveying
imagery, to provide the maximum amount of detail into
the subterranean features of the area. The preprocessing
techniques described have a cost in the overall processing
time of data, but it does so in order to increase accuracy. This
could be vital if it is not possible to collect more data, and
the best possible results need to be achieved, even at the cost
of processing time. The aim of this solution is to make use of
the variety of methods available for the detection of edges
and processing of images, as well as the robust information
provided by drone surveying, and create a data model with
the most detail possible. The proposed solution will make
use of machine learning to sort and optimize the output of
the collected details.

2 RELATED WORK
2.1 Applications of Edge Detection

A big part of this project is the idea that data from different
edge detection algorithms run over the same images will
extrapolate different details. One example is the Canny edge
detection method, which is used by Soman and Kurnia et al.
in their respective research. Both conclude that the algorithm
is both fast and effective at identifying objects in noisy or
distorted environments[13][7].

Another method, which makes use of Bayes’ Theorem,
is based on measuring the variance of the directions of the
gradient of brightness. The probability of the event that a
point belongs to the approximation of a straight segment
of the isoline of brightness passing through the point being
tested is computed using the technique of Bayesian estima-
tions and used as a weight [12]. At the time this method was
proposed (2002), this method had a similar time complex-
ity as other methods such as Beaudet, Deriche-Giraudon,
Harris—Stephens, and others, and is much more accurate
according to test results from Sojka [12].

The Sobel operator performs the measurement of 2-D spa-
tial gradient on an image and it emphasizes high spatial
frequency regions that correspond to edges. This operator,
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which is based on the local maxima and minima of deriva-
tives, can be very efficient, and in one implementation by
Wang et al. , this method is used for real-time video edge
detection. Part of the efficiency in this particular implemen-
tation comes from the use of FPGA (Field Programmable
Gate Array) processors because FPGAs have parallel and
high computational density [15].

One more modern algorithm involves using particles for
the detection. The basic idea is that at the corner the bubble
has less options to move, compared to the flat edge or an
edgeless window. The particles follow the edges of a shape
until they reach the other side, recording their status [8]. The
authors conclude that this novel method is more effective
than standard methods in terms of accuracy. It remains a
drawback, however, that this method is extremely new and
relatively untested.

Another more modern tool for corner detection is Artificial
Eye Tremors. This is a very unique method, as it is inspired
by the way our eyes involuntarily move and detect shapes.
It involves simulating an eye tremor by shifting the origin of
the address scheme over each initial layer one location [4].
The authors conclude that while their bio-inspired algorithm
is not as accurate as some other Tradition Image Processing
(TIP) methods, however, it is much faster when used over
large pieces of data, and still provides a reasonable estimation
of corners.

Algorithms such as these are frequently used for process-
ing surveying images, as can be seen in Soman’s work, where
image processing is used to detect edges in images of build-
ing rooftops, and identify the boundaries of buildings, even
under cover of trees and other potential false positives [13].
Soman’s implementation used the Canny edge detection
method, which is an algorithm that we plan to use in our
proposed solution. Another aspect of Soman’s work that re-
lates very directly is the use of filters like NDVI (normalized
difference vegetation index), which allow more detail to be
extracted from an aerial image.

In Teng and Xue’s work, the Sobel operator is used to
reduce the blurring around shapes in underwater imagery
[14]. While this work does not make use of drone imagery,
the Sobel operator is an important image processing tool,
and might also work to reduce noise in out implementation.

3 DESIGN AND IMPLEMENTATION
3.1 Hypothesis

Our goal for this project is to show if combining multiple
layers of edge detection into each image before training anAl
with them can yield a higher accuracy than using the images
with no preprocessing. We hypothesize that a small percent-
age of accuracy can be gained with our initial experiments.
Such a result would also indicate that more time, research,
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and testing might be able to yield a more substantial increase
in model accuracy.

3.2 Datasets

For this project, we hope to test multiple sets of data. Just as
different algorithms can be used together to create a compos-
ite result, the project as a whole will be tested and compared
with different combinations of data. Most of the data for this
project came from Kaggle. The sets chosen from here were
picked because they represent very different applications,
which can all make use of a similar machine learning ap-
proach. Some of the data was chosen because it is binarys; it
detects whether an image does, or does not, contain a specific
thing.

notdocks

notdocks

Figure 1: Detecting Docks Data Sample

3.2.1 Detecting Docks. One set used in this project is a train-
ing set for the detection of a plant called docks [2]. The set
contains about 2000 images of the plant we are trying to
detect and about 4000 images of other plants. The purpose
of this set is to be able to detect a specific plant from a set of
similar-looking images, such as those captured with a drone.
Since these images will all be some a similar angle and are all
images of plant matter, they can be much harder to classify
than something with more distinct features. This is part of
the reason this set was chosen; it represents a classification
obscured by similar negative and positive cases.

3.2.2 Detecting Cats vs. Dogs. This set is another simple
binary training set, with one big folder of cat images, and
one big folder of dog images [11]. This set was included
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because unlike the docks set, which is relatively stable in
terms of color and orientation, this set is very chaotic. Its
images vary in perspective, the color of the subject, surround-
ings, lighting, and many other parameters. This provides an
opportunity to test which kind of data provides better results

Figure 3: Detecting Pneumonia Data Sample

3.2.3 Detecting Pneumonia. Another binary data set used
in this project is for training an Al to recognize an x-ray of
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a set of lungs which have pneumonia [9]. This set contains
examples of healthy lung x-rays, as well as those diagnosed
with pneumonia. This set was chosen because it is a media
other than visible light imagery (the light spectrum that
people see), and it is represented in grayscale. These two
differences make it possible that the set will produce different
results than the others, making it a good addition to our
testing data.

3.24 Detecting Natural Features. This set, created by Intel,
provides six labels; buildings, forest, glacier, mountain, sea,
and street [3]. This set was included because it provides a
lot of image data for each category (similar to the amount
provided in other sets with only two labels), and has a small
amount of well-defined categories.

Figure 4: Detecting Natural Features Data Sample

3.25 Detecting Fruit Types. This set has 15 different labels,
each a type of fruit, and also includes enough data to make
each label comparable to those in the two-label sets [5]. This
set was included in order to test an outlier to the rest, which
all have relatively small numbers of labels. Our hypothesis is
that sets with more labels will achieve lower accuracy than
those with less.

3.3 Edge Detection

For our implementation of edge detections, we make use
of two popular libraries; SciPy and OpenCV-Python. These
libraries each include a handful of algorithms for edge de-
tections, and between the two of them, a reasonably large
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amount of combinations are possible. The SciPy library in-
cludes an implementation for the Prewitt edge detector (Shown
in Fig 6).

Figure 6: Prewitt Output of Fig 5

Using OpenCV, we can create simple, efficient implementa-
tions of Canny edge detection without losing any robustness
or configurability. The library also provides algorithms such
as the Sobel x and y operators (Shown in Fig 7 and 8) and
Laplacian Edge detection. The provided implementations are
fast and effective but must be tuned carefully in order to
produce a meaningful result.
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Figure 8: Sobel Y Output of Fig 5

These algorithms on their own provide a useful insight
into the detectable edges of an image, but a composite re-
sult from multiple detections will provide much more depth
of information. In order to combine the outputs of these
detections, we make use of the Pillow image manipulation
library. This allows images to be constructed from individual
color channels. By assigning one to three edge detections to
one channel each, a three-colored composite image can be
formed. This composite will serve as the input to the neural
network (Shown in Fig 9).
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Figure 9: Composite of Fig 5, Fig 8, and Fig 6

3.4 Neural Network

This project also makes use of a neural network through
the library fastai. Fastai is a relatively new machine learning
library for Python, built on top of the torch library. Its ex-
pressed goal is to provide an industry level machine learning
experience that is accessible to anyone. For this project, we
use a CNN (Convolutional Neural Network), which is a kind
of neural network specifically well suited to image feature
detection.

The fastai library provides access to multiple kinds of
learning model, which is a parameter that greatly affects the
results of machine learning. For our purposes, we will use
the Resnet18, Resnet 34, and Resnet50 models.

3.5 DataGlob

In order to tie all these things together, our implementation
uses a python data strucutre, called DataGlob. This struc-
ture was created to account for all the data and variables
associated with creating a model using the edge detection
process described above. The main advantage to organizing
everything into a data structure is that it can be used easily
in different formats, such as terminals, Jupyter notebooks,
or in a GUL

The DataGlob keeps track of which algorithms should be
used to process images, and allows the user to configure up
to three to be used together. It also keeps track of where data
will be found, and where temporary data and output data can
be stored. once things are set up, data will be copied from the
source directory, processed in the temporary directory, and
placed in a structure identical to what they came from in the
output directory, this way there will be one edge detected
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version of each image in the source directory in the same
place in the output directory.

Once the data has been processed, the data structure pro-
vides easy methods for using the same data to create a model.
Also stored in the Dataglob are the configurations for all of
the CNN settings, such as the size each image should be, and
what kind of resnet model to use. After being trained, the
model will be exported into the output directory, alongside
the processed data set.

4 RESULTS

Over the course of this project, we have run hundreds of
hours of machine learning epochs. Most of the data that is
relevant has been recorded and is kept in a detailed document
which can be seen in parallel with the source code for the
project.

4.1 First Tests

Chest X-ray | Cats Dogs Intel Images Plant Id

Control 92.4% 97.2% 87.4% 92%

Canny Tight 92.4% 94.8% 78.7% 91.7%
Canny Auto 92.6% 91.8% 79.6% 88.8%
Canny Wide 93.1% 91% 77.8% 88.5%
Laplacian 93.4% 94.1% 79.9% 92.2%
Sobel X 92.3% 92.4% 78.2% 90.3%
Sobel ¥ 94.7% 90.9% 78.5% 90.5%
Prewitt 94.3% 88.3% 76.6% 89.8%

Figure 10: Single Algorithm Accuracy

For our first phase of testing, a model was created using
each algorithm on its own. Canny edge detection, Laplacian
operator, Sobel operator, and Prewitt edge detection were
tested for this (shown in Fig 10). From this initial test, we
notice a trend in the amount of difference and the ability to
pre-process to positively affect results. It is detrimental in
the intel images set, where there are multiple different labels
for sets of various diverse images. Plant id and cats-dogs
are both binary labels (they only have two states, such as
true and false), and show a much closer accuracy. The chest
x-ray set makes use of pre-labeled x-ray data which is all in
roughly the same form and pattern, with the same colors and
orientation. We hypothesize from this trend that sets with
many different labels or sets with varying, chaotic images
may be negatively affected by preprocessing, which those
with a more standard arrangement or orientation will benefit
from the edge processors’ ability to filter data.
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4.2 Follow Up Tests

We wanted to start testing combinations of algorithms, to
see if any set of two achieves higher accuracy than the single-
algorithm tests. In order to do this, we used the same set from
Fig 10 which yielded positive results, and started focusing in
on what worked. Since the Sobel y-axis test had the highest
accuracy, the logical starting place was to test that algorithm
combined with each other algorithm in pairs of two (Shown
in Fig 11). Fig 9 is an example of the images generated by
this preprocessing setup.

Rsnet18 Resnet34 @ Resnet50

1.000
0975

0950

- | I I | I I |
0.900

Control ~ Canny ~ Canny  Canny Laplacian SobelX  Prewitt
Tight Auto ‘Wide

Figure 11: Sobel Y + Single Algorithm Accuracy

4.3 Final Tests

To wrap up the tests performed over the course of this project,
the final tests was designed to compare a full preprocessed
compression, with three different layers, each processed us-
ing a different edge detection algorithm. This kind of usage
was what was intended for the project, and using results
from Fig. 10 and Fig. 11, we were able to focus in on the
combinations most likely to yield positive results. Just like
the second set of tests, we use the Chest X-ray set, which
has been the most responsive to preprocessing so far.

Fig. 12 shows the benefits of this changing scope and speci-
ficity between our tests. The blue control line represents the
accuracy over training of an unaltered set of data, using no
preprocessing. The orange line represents a combination of
the Prewitt and Sobel Y preprocessing algorithms (the third
layer in the JPEG compression will just be a copy of the
original). The green line shows a new test, using the most ef-
fective combination from our previous testing (Prewitt+Sobel
Y), and adding in the most effective third algorithm, Canny
Wide. The result is a higher accuracy after 5 epochs than
either the previous test, or the control test is able to achieve.

4.4 Applications

The applications we foresee for this work are mostly related
to low-budget science. More effective data can be captured
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Figure 12: Sobel Y + Prewitt + Canny Accuracy

with costly hardware such as specialized lenses and cam-
eras, and more efficient models can be created with the use
of cluster computing and GPGPUs. This project, however,
provides a unique level of user-friendliness to the problem
of increasing accuracy without new data. We provide a free,
easy to use option for increasing accuracy in some data with
very low overhead compared to the time it takes to train the
model itself.

Our processes described in this paper does not affect all
data in the same way. With certain sets of data, an increase
in accuracy may not be possible, however, with some, feature
detection can be improved by several percents. The specifics
that determine whether data will be positively, neutrally,
or negatively affected by these preprocessing steps are not
concrete, but positive results seem to correlate to binary data
sets containing very similar images. For this reason, a more
specific application for this work might be to use it alongside
drone collected data, because of its homogenous nature, or
MRI imagery, which tends to look similar from image to
image. These applications have the most to gain from this
kind of preprocessing method.

5 CONCLUSION

We conclude that this project has the potential to benefit
some Convolutional Neural Networks, at the cost of some
additional time for preprocessing. With the work that has
been done so far, it is clear that not all sets of data can benefit
from the kind of layered detail provided by this preprocessing
method. Some sets are too diverse, or too chaotic to have
emergent patterns from this processing. Other sets, however,
can benefit from it; particularly those sets with a predictable
orientation and noise level, such as imagery captured with a
drone.

5.1 Future Work

The next step for this project would be to conduct more
testing. Creating models with each permutation of a set of
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algorithms is a time consuming process, and if the knobs
and settings of a CNN model are also considered as mutable
aspects of the project, the number of test cases increase
exponentially.

Our preliminary work outlined in this project is just a
starting point for refining this process, meant to demonstrate
the possibility for improvement to model accuracy.

Another addition to this work would be to test more data
sets. Our initial idea for the project involved collecting data
with drones to test preprocessing with. This idea was scraped
based on the time-frame of the project, however, we feel that,
given more time, this would be the best way to refine the
process and implementation described here.
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