
Parameterized Maze Generation Algorithm for Specific Difficulty
Maze Generation

Liam Peachey
ljpeach18@earlham.edu

Department of Computer Science
Earlham College

Richmond, Indiana, United States

ABSTRACT
Mazes as a problem domain have wide applications, from art and
games to testing decision algorithms. While there has been focus
on the topology of mazes, recent work on generating specific levels
of difficulty of maze is more scant. Additionally, existing models for
analyzing a maze’s difficulty may not accurately reflect difficulty for
both humans and computers, with some mazes classified as more
difficult appearing easier to a human solving the maze. This paper
explores a three piece method for generating mazes of specific
difficulty using a neural network, parameterized maze generation
algorithm, and difficulty model.

KEYWORDS
neural networks, maze generation, graph analysis

.

1 INTRODUCTION
Mazes are a well known and easily understood problem domain
in AI research. They have been produced throughout history for
purposes of entertainment, defense, and decoration. The structure
of a maze impacts the ease of which a human or algorithmic agent
may navigate the maze. Either a human or an AI could easily solve
a maze that is just a straight line to the goal, but it might be easier
for a human to spot overarching patterns within a maze than for an
algorithm. How would such a maze be classified? Models exist by
which the difficulty of a maze may be estimated, but these have pri-
marily been aimed at algorithmic agents [8]. Bellot et al.’s approach
integrates McClendon’s difficulty analysis, and produces a measure
of how fun a maze is, integrating some of the ways humans scan
mazes [1].
Additionally, existing research on maze generation is limited to find-
ing algorithms that generate more complex mazes, or mazes with
specific topology, such as image mazes [3, 9, 13]. There currently
are no unified systems for generating mazes of specified difficulty
using only one algorithm. This research produced an algorithm that
generates mazes of a desired resultant difficulty to guide generation.
The process uses a neural network to transform a difficulty rating
andmaze dimensions into a series of parameters that will affect how

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CS488 Senior Capsone, , Earlham College
© 2022 Association for Computing Machinery.

the maze is generated. The neural network will be trained using
varying difficulty models, with the resulting mazes being tested
using Gabrovšek’s method for measuring the difficulty of a maze
through the use of agents to determine which difficulty models
produce the most accurate ratings [3]. The difficulty models used
are McClendon’s difficulty model, and Bellot et al.’s model[1, 8].
This research aims to introduce new factors to include in difficulty
analysis as well.
This paper provides a detailed background review in section 2, de-
sign and implementation details in section 3, experimental results
in section 4, conclusions in section 5, and a review of future work
in section 6.

2 BACKGROUND
This background section will cover the primary sections and foun-
dations for this project. The first section covers approaches for how
mazes are typically generated. The second section covers existing
models and techniques for defining the difficulty of a maze. The
final section covers ways that machine learning has been used to
assist in maze generation.

2.1 Maze Generation
Mazes at their cores are cell graphs. The edges of the graph can be
traversable, or not. Those that are not are considered walls. In a
typical maze, cells consist of four edges, forming a grid. However,
this representation can be bent to create other structures as well [7].
For the purposes of this research, I will be focusing on the standard
four neighbor cell graph. Perfect mazes are defined as mazes that
have a singular path connecting any two cells [1]. While not all
mazes are required to have this attribute, it does allow for easy maze
generation through the use of spanning tree generating algorithms
[5]. As a result, maze generation typically makes use of existing
algorithms for generating these spanning trees.
As mazes are well known, there are already a number of algorithms
to generate mazes. The Recursive Backtracking method chooses
a cell on the graph, marks it visited, adds it to a stack, is marked
as visited, and then chooses a random neighbor that has not been
visited to join with. That neighbor becomes the next active cell, and
the process repeats until there are no unvisited neighbors around
the active cell. At this point, the current cell is abandoned, and a
new cell is popped from the stack. Once the stack is empty, the algo-
rithm halts [11]. This method is essentially a depth first traversal.
Kruskal’s algorithm works by separating the graph into sets and
then joining them back together one cell at a time. When two cells
are joined, they become part of the same set. Cells are only joined



CS488 Senior Capsone, , Earlham College Liam Peachey

with cells in different sets. Once the whole graph is part of the same
set, the algorithm completes [11].
Prim’s algorithm is similar to the recursive backtracking algorithm.
It also makes use of a frontier to connect new cells. Instead of pop-
ping the next cell off the stack however, it randomly chooses a cell
from within the frontier, and it then adds that cell to the "visited" or
"in" group, and adds unvisited neighbors to the frontier [11]. This
is the approach that this research will be building off of.

2.2 Difficulty
Bellot et al. outlines existing methods for assessing the difficulty
of mazes, and produces their own model for calculating how fun
a maze is [1]. McClendon’s difficulty ratings, which Bellot et al.
used and refined in their model, is based on the complexity of the
solution path multiplied by the complexity of all branches in the
maze [8]. Bellot et al.’s approach takes into account the number of
what they refer to as "non-significant" walls [1]. According to them,
mazes with a low number of non significant walls and the highest
difficulty as rated by the McClendon model are the most fun.
Finally, Gabrovšek uses a number of agents to explore a maze, using
their performance to determine which algorithms produce the most
difficulty mazes [3]. Bellot et al. also produced two hybrid algo-
rithms that they used for generating mazes that they determined
to be more fun [1]. However, this and many other works failed to
create systems of generating mazes of a specified difficulty.

2.3 Maze Generation and Machine Learning
Susanto et al. produced a genetic algorithm for generating a type
of maze [12]. Their mazes are not the usual cell graph type, and
are specific to the game they developed. They encoded patterns
into genes that would then be used within the genetic algorithm
[12]. Their method also seems to be suited to generating higher
complexity levels. The goal of our algorithm is to produce mazes
of a specific complexity without long training cycles at run time,
so a genetic algorithm like this one would not be a good fit.

3 DESIGN AND IMPLEMENTATION
This project aims to gauge the effectiveness of the parameter set
chosen for maze generation, and to determine whether it would be
feasible to use machine learning techniques to convert a difficulty
value into said parameters.
The overall framework of the project is outlined in Figure 1. Input
difficulty is the desired difficulty of the maze. This is passed to the
maze generator neural network (MGNN) which will return a set of
parameters for the main algorithm in an attempt to produce a maze
that matches. The generated maze is then passed to the difficulty
model, which analyzes the maze difficulty. The MGNN then uses
this value and the goal difficulty to grade, and proceeds to the next
generation. This describes the learning loop. After this is completed,
the algorithm may be used to generate a pool of mazes for agent
functions to complete. The performance of these functions is then
compared with the desired difficulty of the maze, as well as the
difficulty model’s assessment of the maze, and compiled as perfor-
mance data.
The difficulty model will factor in the work of Bellot et al. to create

measure of how fun a maze is, as well as re-examining McClendon’s
difficulty formula, which is already factored into Bellot et al.’s for-
mula, to look for additional factors by which to determine a maze’s
theoretical difficulty [1, 8]. Distinct MGNN’s have been trained on
the difficulty models used to assess the usefulness of each model.
Additionally, I will be using Gabrovšek’s method of employing
maze solving agents to determine maze difficulty and complexity
[3]. I will be adding additional agents however, including heuristic
searches, such as A* search, greedy, etc. for more accurate measures
as to how a computer may solve a maze as well as how to push the
model further.
If the data shows the approach is feasible, a neural network will
eventually use difficulty models as feedback. Parameters include
which cells will be selected for expansion, directional biases, and
maximum ratio of certain types of intersection (outlined by Kim and
Crawis) to the maze’s size [6], and solution length. Other factors
will likely be added or removed during the course of the project.
The core of the algorithm will be based on recursive backtracking
for maze generation [11]. Recursive backtracking makes use of a
frontier built through cell discovery, which should allow for more
control over determining how the maze will grow.
This work will be evaluated by comparing the desired difficulty
rating of mazes generated, actual difficulty ratings as based on the
models used, and the performance of the agent functions used later
on. We will test multiple difficulty models for training the MGNN,
and analyze all of them to see which works best with the recursive
backtracking system we develop.

3.1 Neural Network
The idea for this section is to train a neural network to be able to
generate the set of inputs for the maze generator given a desired
difficulty and dimensions for the maze. This could likely be accom-
plished via a Generative Adversarial Neural Network given a large
enough supply of pre-generated sets of mazes to use as a training
set. The setup for this section is difficult as this problem demands
what is essentially a reverse classification network.

3.2 Maze Generation
3.2.1 Parameters.
The goal for the maze generator was to find areas within gener-
ation to try to exert greater control over, while still maintaining
the maze’s randomness. The primary principle behind this maze
generation algorithm is to repeatedly take nodes that are within
the maze, and connect a random neighboring node until all nodes
are within the maze. "within the maze" meaning there is a way to
access the node from the starting point of the maze generation. This
means that aside from the maze’s dimensions, we can alter how
we select the node to expand from (see section 3.2.4), and which
neighbor is selected (see section 3.2.2). Additionally, the McClendon
and Bellot difficulty models both stress that solution path length is
an important feature of a maze, so the ranking of solution length
can also be used as a parameter[1, 8]. Finally, we can use starting
nodes within the maze to influence growth.
Starting nodes are given as collection of ordered coordinate pairs.
They correspond to the positions of the nodes that will be initially



Parameterized Maze Generation Algorithm for Specific Difficulty Maze Generation CS488 Senior Capsone, , Earlham College

Figure 1: Architecture Diagram

placed within the frontier list as described in section 3.2.4.
Existing maze algorithms include Depth First, Breadth First, and
Random traversals [11]. Depth first selects the newest nodes added
to the maze first, breadth first selects the oldest, and random tra-
versals choose randomly. This algorithm takes this idea, and is
implemented using a list rather than a stack/heap so that any "ex-
pandable" node may be selected. Nodes that have been expanded
from may be re-expanded from, so they must be placed back into
the pool along with new nodes. This creates an opportunity for
three parameters: old node insertion point, new node insertion
point, and the node selection point. To allow for random selection,
each point is represented as a ratio from zero to one, where zero is
the start of the list and one is the end of the list. A range of 0-1 for
all parameters results in a random traversal behavior. 0-0 for node
insertion and 1-1 for node selection results in BFS behavior. 0-0 for
all results in DFS behavior.
To affect what neighbor is selected, I used directional bias. McClen-
don and Bellot both make use of path complexity, defined as the
number of turns on a given path, so including a way to affect how
curvy a path is should allow for greater control over complexity, and
therefore difficulty[1, 8]. This bias is defined using three weights,

0-1 each, representing a selection weight for left, right, and straight.
These directions are relative to the initial entry into the node. If a
node is added to the maze through a path from the bottom, straight
maps to the top of the node, left to the left of the node, etc. If it is
entered from the right, then straight maps to the left of the node,
and left maps to the bottom, etc.
Solution path length is dictated by how long a given path is com-
pared to all others. The parameter is given as a number 0-1, cor-
responding to the general ranking of the desired solution path to
others. 0 is the longest solution path, 1 is the shortest.

3.2.2 Nodes.
Nodes describe all possible positions within the maze. Pointers
to neighbors can be considered hallways.Essentially, if a node is
accessible from a given node, there is a hallway connecting them. If
not, there is a wall between them, or they’re just not adjacent. For
the purposes of this research, all hallways are limited to adjacent
nodes. Nodes store a set, which describes whether they’re inside
or outside of the maze (value is 0), as well as which starting node
they belong to. Nodes also store their coordinate to allow for easy
identification, access, as well as to assist heuristic algorithms in the
evaluation phase (see section 3.6).

3.2.3 Graph.
The maze as a whole is constructed through the graph formed from
the above interconnected nodes. The first stage in the maze gener-
ation process is constructing a full grid of nodes. There are a few
ways to do this: Maintaining a 2D array of nodes, where nodes
only point to their neighbor if there is a hallway connecting them,
and maintaining only a pointer to a starting node, where all nodes
within the graph maintain pointers to their neighbors, and have
additional variables which determine whether the connection is
a wall or a hall. Both methods have their advantages and disad-
vantages. The first method has quick access for any given node
coordinate, but requires maintaining a separate array in addition
to the maze nodes. The second method has O(length+width) time
complexity for accessing a random node, but only requires space to
store the nodes. During the actual traversal of the maze, fast access
is not particularly valuable as traversal may be handled through the
nodes pointers to their neighbors. This means that on large mazes,
space savings become more valuable than access time savings. This
choice does not make an impact on the results of the research, but
choosing the node only approach also allows for non-grid mazes.

3.2.4 Pre-Traversal.
Before traversing the maze graph, starting points for the maze are
assigned distinct set values. As the maze is constructed by expand-
ing into spaces that are not part of the maze, starting nodes form
islands of nodes that are inaccessible to each other. By assigning
each starting node a set, and having each new node added to that
set’s island, once the entire graph has been traversed, we can go
through and join each set, removing islands and constructing a
single perfect maze (see section 3.2.6).

3.2.5 Frontier and Traversal.
Traversal is accomplished by popping nodes with open edges that
are part of the maze from the frontier, expanding them, and pushing
both the new addition and old node if it has remaining open edges
back into the frontier. Once the frontier is empty, the entire maze



CS488 Senior Capsone, , Earlham College Liam Peachey

has been traversed. For a node selected for expansion, an available
neighbor to create a hall to by considering the directional bias pa-
rameter. The bias parameters are used to create a weighted random
number, which corresponds to the desired neighbor to expand into.
The frontier refers to the collection of nodes from which the maze
can be expanded. These nodes are all within the maze, although
they may not be within the same starting node "set." There is also
the possibility that a node can become a dead end while it is still in
the frontier. This is handled by simply passing by dead ends and
popping a new value. As the algorithm has been parameterized
to include a random range for pushing old and new nodes, and
pop position, the frontier needs to have fast insertion and removal
operations, while maintaining insertion order. I accomplished this
by creating a linked list with a pointer to the node at the middle
of each range of values (old, new, pop). This reduces access time
by a small amount while maintaining a fast insertion and removal
speeds.

3.2.6 Set Joining.
Once the graph has been traversed and all nodes are within a
set corresponding to a starting node, the sets must be joined to
form a complete maze. The algorithm chooses a starting set and
finds all nodes that border a different set. One of those nodes is
randomly selected, and random neighboring cell of a different set
is chosen. The set that node belongs to is added to a set of sets that
are considered "within the final maze" so that it can be ignored
for all further perimeter checks. Nodes that only border nodes of a
sets within the final maze are removed from the list of perimeter
nodes. The new set of nodes is traversed again, adding all additional
perimeter nodes to the list. This process continues until there are
no perimeter nodes, meaning that all sets are within the final maze.

3.2.7 Solution Path Determination.
Solution paths are limited to nodes along the edge of the graph.
This is not necessary, but it’s helpful for human readability. The
process for deciding the start and end node pair requires finding the
length of the path between all pairs of perimeter nodes. As mazes
generated by this algorithm are considered perfect mazes, there is
only one path between any two given nodes, so we do not have
to consider shortest or longest paths. [1]. We quickly determine
the solution path by converting the maze into a tree, where each
node of the tree stores its depth, and a reference to its parent. We
maintain a list of tree node positions for all perimeter maze nodes.
The algorithm for determining the path length between perimeter
pairs is as follows:

while the tree nodes are not the same:
if either tree node has a depth of zero:

Add both depths to the path length
break

if the tree nodes have different depths:
move to the tree node's parent
add 1 to the path length

if the tree nodes have the same depth:
move both nodes to their parent
add 2 to the path length

return the path length.

These path lengths are used as keys while the node pair is stored as
an item. The keys are sorted, and then node pair with a key ranked
at the spot indicated by the solution rank parameter is returned as
the start and end points for the maze.

3.3 Difficulty Models
3.3.1 McClendon Difficulty.
This difficulty model is used as the foundation for difficulty analysis
during the project. The model is represented by the equation:

𝛿 (𝑀) = 𝑙𝑜𝑔

[
𝛾 (𝑇 )

𝑛∏
𝑖=1

𝛾 (𝐵𝑖 ) + 1

]
Where 𝛿 represents the difficulty of a given maze, 𝛾 represents the
complexity of a given path, M represents the maze, T represents the
solution path, and B represents a branching path[8]. B is contained
within the set of n paths in the maze that are not part of the solution
path. The complexity of a path is defined as:

𝛾 (𝐵) = 𝐷 (𝐵)
𝑛∑︁
𝑖=1

𝜃 (𝑤𝑖 )
𝑑 (𝑤𝑖 ) ∗ 𝜋

Where 𝜃 is the change in direction for a given position in the maze
measured in radians, 𝑤𝑖 is a position within the maze, 𝐷 is the
length of the given path and 𝑑 is the length of a given position in
the maze.[8] Since our maze generator only generates rectangular
mazes, there are parts of this equation that can be simplified [1].
All turns within the maze are 90◦, so if there is ever a turn, it can
be measured as 𝜋

2 , simplifying our function.

𝛾 (𝐵) = 𝐷 (𝐵)
𝑛∑︁
𝑖=1

1
2𝑑 (𝑤𝑖 )

To calculate the difficulty, we find the solution path, tracking its
length, and marking all intersections it contains as the start of
branching paths, including the start and end points of the solution
if either of them are not dead ends. We traverse the solution path,
counting how far between each turn, using that value as our 𝑑 (𝑤𝑖 )
value. Once the traversal has completed, we multiply by the length
of the solution. As all complexity results for the solution path, and
branching paths, are multiplied together within a logarithm, we can
immediately calculate 𝑙𝑜𝑔 (𝛾 (𝑇 )), and set aside. Next, we perform a
similar set of operations for each branching path. However, as these
paths branch, we consider the start and end points of any given
path to be marked with an intersection and an intersection, or an
intersection and a dead end. If we hit another dead end, we mark
that intersection just as we did for the solution path, and move on.
Once we finish exploring a branch, we take the logarithm of its
complexity value, and add it to a sum. We take the logarithm early
in order to avoid massive numbers that can overflow quickly.
While this method works well for categorizing mazes, it has a short
coming for the set up of the maze generator within this project.
Primarily, for mazes with extremely short solution paths, such
as when the start and end points in a maze are adjacent, due to
considering all branching paths of the maze, the maze’s difficulty
remains large, despite not being difficult to solve for a human, or
machine.



Parameterized Maze Generation Algorithm for Specific Difficulty Maze Generation CS488 Senior Capsone, , Earlham College

3.3.2 Bellot et al. Model.
This model uses the McClendon difficulty model as a base, and
considers walls to be an additional important factor in solving a
maze. Specifically, the Bellot et al. Funness model is interested in
how the number of insignificant walls interacts with difficulty. Non
significant walls are walls that are removed in their "non-significant
wall removal" process [1]. Non significant walls are walls that, when
viewed within a 2x2 grid of maze nodes, are not connected to any
other wall. The process for removing non significant walls is as
follows: mark where, for all 2x2 sets of adjacent nodes, there are
more than 2 walls. Next, find all non-significant walls, and delete
them. Find all non-significant walls, and delete them again so long
as they are not marked. Continue this process until there are no
more non-significant walls. Count the number of removed walls.
This value is then divided by the McClendon difficulty for the maze,
and this becomes the funness rating for the maze.

3.4 Maze Testing Via Agents
While human testing is difficult to organize and harder to get ethical
clearance for, testing via AI is quick and easy. As such, we chose to
use a series of agent functions to solve the mazes our algorithms
produced, analyzing performance to see how well each agent does
for each maze iteration. This approach is also based on Gabrovšek’s
previous work [3]. Each technique used for this evaluation traverses
through the maze using node expansion (a given position being
considered a node, which can be expanded to generate the different
resultant moves from a given position) so we can use the metrics
"nodes expanded" and "nodes generated" to see how much work
each agent had to do. Nodes expanded refers to how many individ-
ual nodes we directly examine and generate children from, while
nodes generated refers to how many nodes we generate total. We
can also use time as a metric to measure efficiency, but our primary
concern is the performance of the maze, not the efficiency of the
algorithm, so this metric will receive less focus. One metric that I
believe would require a deeper look would be the number of dead
ends the agent hits. This would offer insights to how easy it was for
the agent function to find the correct path in addition to how many
nodes it took to fill the correct path out completely. Additionally,
as a property of our mazes being that they are "perfect" mazes, any
path from start to end that one of the agent functions finds will
be the optimal solution. This means we can focus solely on the
efficiency of each of our agents rather than the fit of the solution
they find.

3.4.1 A* Heuristic Search.
The A* Heuristic search is a commonly used search that takes into
account both cost to reach a given position, as well as a heuristic
value which estimates the cost to reach the goal [4]. A* is commonly
used for solving path finding domain problems, and grid like mazes
lend themselves well to the use of the Manhattan Distance heuristic
model [2].

3.4.2 Greedy Best First Heuristic Search.
Greedy Best First Heuristic Search is another commonly used search
agent that resembles A*. However, unlike A*, Greedy does not take
solution depth into account, only the estimate of how far until the
goal state [10]. This can lead to faster solutions that frequently

do not produce optimal solutions. In this case, optimality is not a
concern, so greedy provides a slightly different informed search to
gauge the mazes off of.

3.4.3 Depth First Search.
Depth first search has been conceptually explored earlier in this
paper, but the main idea is to explore as far down as one can before
backtracking to an earlier position to explore further. This agent
function essentially picks a path and sticks with it as far as it can
before it’s forced to choose a different one, exploring all the newest
nodes first. It uses a stack as its foundation which can be helpful in
visualizing how it functions.

3.4.4 Breadth First Search.
This search has also been conceptually explored, but the basic idea
for this one is to explore all the oldest nodes first. It uses a queue as
its foundation, which can be helpful in visualizing how it functions.

3.5 Evaluation
The maze generation process will be evaluated through the use
of the difficulty models covered earlier as well as through the use
of agent functions. This servers the purpose of providing more
data that can be used to corroborate our observations, while also
evaluating the fitness of the difficulty models used. It could be that
a certain model of maze generation produces mazes that using a
certain model may appear highly difficult where any agent function
could solve it in two node expansions consistently. Each set of
parameter inputs for a given maze will be tested 1000 times to gain
a more accurate view of the typical maze of that setup. The data
should tell us whether there’s consistency and promise in the idea
of using the parameters chosen for use in our algorithm to affect
the difficulty of the maze. If the data supports the assertion that
the parameters do hold a promising effect on the difficulty, then we
can proceed to work with formulating a neural network or other
machine learning technique for processing desired difficulty inputs.

4 RESULTS
The data shows that the parameters for maze generation can have
a strong effect on the difficulty of a maze. For example, in Table
5, the Center starting point BFS Straight bias maze has a very low
difficulty, while the Center starting point BFS right bias maze had a
far higher difficulty (still below average for a 25x25 maze). Results
show that DFS node selection tends to produce more difficult mazes
by the McClendon model. DFS in these tests randomly selected a
node from the first 10% of nodes within the active node frontier for
expansion. Interestingly, the difficulty models seem to not reflect
short solution paths in their final difficulty. This can most clearly be
seen in Table ?? where the difficulties for the mazes rise the shorter
the solution path becomes, while the amount of work any of the
agent functions performs drastically decreases. As the models both
use a multiplicative approach when combining the complexity of
the solution path and the complexity of the branching paths, even
if the solution path is extremely small, if there are many branching
paths, the difficulty will be large.
In addition to performance testing, the mazes produced by different
parameter sets have distinct visual topography. Using the two cor-
ners of the maze as the starting points produces a clear line down



CS488 Senior Capsone, , Earlham College Liam Peachey

the middle of the maze where the two "sets" (see section 3.2.6) of
joined nodes meet. This effect can be seen in figures 2 and 3. This is
more of an aesthetic distinction than a functional one however as
there is still only one path from any two nodes. The agent function’s
performance also did not change significantly when paired with
varying starting points (Table 1), although interestingly there was
a jump in difficulty at 3 starting points. Directional bias also create
interesting effects on the mazes. Figure 4 and 5 take on the ap-
pearance of mirrored windmills. Figure 6 forms swirling eddy-like
passages. Figures 7 and 8 are similar, but the directional bias shows
here as well. Understanding that longer curve-less passages lead
to lower complexities, we can reasonably conclude that directional
bias can play a role in difficulty determination. As seen in Table 5
and in Figure 2, certain configurations can create incredibly low
difficulties as well.

Figure 2: Corner Starting Points, BFS, Straight Directional
Bias

4.1 Tables
5 CONCLUSION
Maze generation using the parameter set used within this research
successfully influenced the resultant difficulty of the generated
mazes. Certain input groupings can be used for more stark effects,
such as the straight directional biases, and some inputs when used
in combination can create drastically different results, such as BFS
and straight directional biases. We conclude that given this success,
a neural network or other machine learning technique should be
able to formulate a model by which they are able to convert a
difficulty into the set of inputs. Additionally, while the existing
difficulty models are useful, there are holes in their techniques that
lead to mazes with short solution paths being ranked at the same

Figure 3: Corner Starting Points, Random Expansion, Right
Directional Bias

Figure 4: Center Starting Points, BFS, Right Directional Bias

level or higher than mazes with longer solution paths, which the
agent function testing shows does not accurately reflect the true
difficulty of the maze.



Parameterized Maze Generation Algorithm for Specific Difficulty Maze Generation CS488 Senior Capsone, , Earlham College

Figure 5: Center Starting Points, BFS, left Directional Bias

Figure 6: Center Starting Points, DFS, left Directional Bias

5.1 Future Work
The most pressing future work is to implement the neural network
into the project and begin training. Other future work includes
implementing intersection ratios as a parameter, expanding the
algorithm to include imperfect mazes, attempting to add additional
parameters to maze generation, changing the overall shape of the

Figure 7: Center Starting Points, RND, left Directional Bias

Figure 8: Center Starting Points, RND, strt Directional Bias

maze from a grid to any arbitrary bounds, adding additional neu-
ral network integration within the generation algorithm for more
dynamic generation, adding additional dimensions to the maze
(including three dimensional visualization), allowing nodes to con-
nect to non-adjacent nodes, and implementing additional difficulty
models and agent functions.



CS488 Senior Capsone, , Earlham College Liam Peachey

Table 1:
Starting Points Testing Results

Maze setup 1 strt pnt 2 strt pnts 3 strt pnts 4 strt pnts 5 strt pnts
mcclendon 132.2385 129.7770 138.6990 137.0579 136.6011
bellot 2.591534 2.643539 2.555488 2.587667 2.605675
BFS E 623 615 620 620 619
BFS G 624 618 623 623 622
DFS E 366 438 393 391 379
DFS G 391 460 414 414 403
A* E 490 529 471 507 501
A* G 506 541 492 523 514
Greedy E 429 415 327 369 366
Greedy G 449 437 354 396 392

Table 2:
Expansion Order Testing Results

Maze setup Rnd Expansion BFS Expansion DFS Expansion
mcclendon 132.638474 83.659698 152.577087
bellot 2.580449 3.711855 2.188952
BFS E 623 624 621
BFS G 624 625 623
DFS E 363 374 361
DFS G 388 390 390
A* E 487 513 455
A* G 504 520 474
Greedy E 432 515 339
Greedy G 452 523 365

Table 3:
Turn Bias Testing Results

Maze setup Single Turn Only Straight Only Turn Only No Bias
mcclendon 137.876236 119.555397 144.205704 132.426651
bellot 2.451557 2.984574 2.304719 2.587526
BFS E 623 623 623 623
BFS G 624 624 624 624
DFS E 362 368 364 360
DFS G 387 394 388 385
A* E 487 488 491 494
A* G 504 509 506 510
Greedy E 433 425 426 432
Greedy G 453 448 446 453

6 ACKNOWLEDGEMENTS
Thank you to David Barbella for his time, patience, feedback and
willingness to help throughout the course of producing a project
idea and proposal. Thank you to Charlie Peck for insight, motiva-
tion, and structure. Thank you to Sofia Lemons for all the advising,
inspiration and support. Thank you to Igor Minevich for the data
structure assistance.

REFERENCES
[1] Victor Bellot, Maxime Cautrès, Jean-Marie Favreau, Milan Gonzalez-Thauvin,

Pascal Lafourcade, Kergann Le Cornec, Bastien Mosnier, and Samuel Rivière-
Wekstein. 2021. How to generate perfect mazes? Information Sciences 572 (2021),
444–459.

[2] Susan Craw. 2017. Manhattan Distance. Springer US, Boston, MA, 790–791.
https://doi.org/10.1007/978-1-4899-7687-1_511

[3] Peter Gabrovšek. 2019. Analysis of maze generating algorithms. IPSI Transactions
on Internet Research 15, 1 (2019), 23–30.

[4] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A formal basis for the
heuristic determination of minimum cost paths. IEEE transactions on Systems

Table 4:
Solution Ranking Testing Results

Maze setup Sol Percentile 0 Sol Percentile 0.2 Sol Percentile 0.4
mcclendon 132.457642 138.961395 140.932816
bellot 2.58565 2.464546 2.432711
BFS E 623 519 443
BFS G 624 530 455
DFS E 363 417 398
DFS G 388 432 410
A* E 494 295 223
A* G 511 315 243
Greedy E 433 249 187
Greedy G 453 272 208

Maze setup Sol Percentile 0.6 Sol Percentile 0.8 Sol Percentile 1
mcclendon 143.297333 146.051056 144.079926
bellot 2.387638 2.347678 2.941714
BFS E 355 162 1
BFS G 369 176 4
DFS E 394 361 294
DFS G 404 368 296
A* E 136 51 1
A* G 153 60 3
Greedy E 120 39 1
Greedy G 138 49 3

Table 5:
Misc Setups Testing Results

Maze setup Corner BFS Straight bias Corner DFS Left bias Corner DFS Straight bias
mcclendon 21.521925 158.517014 138.543655
bellot 26.201122 2.110628 2.402767
BFS E 623 622 620
BFS G 624 624 622
DFS E 453 382 367
DFS G 464 408 395
A* E 501 488 459
A* G 508 503 480
Greedy E 345 336 339
Greedy G 361 364 367

Maze setup Center BFS Straight bias Center BFS Right bias Center DFS Rigth Bias
mcclendon 38.979633 105.4664256 154.735107
bellot 12.642587 4.052686 2.155141
BFS E 624 624 615
BFS G 625 625 617
DFS E 213 322 359
DFS G 228 332 389
A* E 211 199 499
A* G 233 213 515
Greedy E 144 183 355
Greedy G 164 196 383

Maze setup Center DFS Straight Bias
mcclendon 135.89505
bellot 2.463364
BFS E 616
BFS G 619
DFS E 356
DFS G 385
A* E 474
A* G 494
Greedy E 345
Greedy G 374

Science and Cybernetics 4, 2 (1968), 100–107.
[5] Paul Hyunjin Kim. 2019. Intelligent maze generation. The Ohio State University.
[6] Paul Hyunjin Kim, Jacob Grove, Skylar Wurster, and Roger Crawfis. 2019. Design-

centric maze generation. In Proceedings of the 14th International Conference on
the Foundations of Digital Games. 1–9.

[7] Xue Li and David Mount. 2016. Spherical Maze Generation. (2016).
[8] Michael Scott McClendon et al. 2001. The complexity and difficulty of a maze. In

Bridges: Mathematical Connections in Art, Music, and Science. Citeseer, 213–222.

https://doi.org/10.1007/978-1-4899-7687-1_511


Parameterized Maze Generation Algorithm for Specific Difficulty Maze Generation CS488 Senior Capsone, , Earlham College

[9] Yuichi Nagata, Akinori Imamiya, and Norihiko Ono. 2020. A genetic algorithm
for the picture maze generation problem. Computers & Operations Research 115
(2020), 104860.

[10] Stuart Russell and Peter Norvig. 2010. Artificial Intelligence: A Modern Approach
(3 ed.). Prentice Hall.

[11] Ms Shivani H Shah, Ms Jagruti MMohite, AGMusale, and JL Borade. 2017. Survey
Paper on Maze Generation Algorithms for Puzzle Solving Games. International
Journal of Scientific & Engineering Research 8, 2 (2017), 1064–1067.

[12] Evan Kusuma Susanto, Rifqi Fachruddin, Muhammad Ihsan Diputra, Darlis Heru-
murti, and Andhik Ampuh Yunanto. 2020. Maze Generation Based on Difficulty
using Genetic Algorithm with Gene Pool. In 2020 International Seminar on Ap-
plication for Technology of Information and Communication (iSemantic). IEEE,
554–559.

[13] Jie Xu and Craig S Kaplan. 2007. Image-guided maze construction. In ACM
SIGGRAPH 2007 papers. 29–es.


	Abstract
	1 Introduction
	2 Background
	2.1 Maze Generation
	2.2 Difficulty
	2.3 Maze Generation and Machine Learning

	3 Design And Implementation
	3.1 Neural Network
	3.2 Maze Generation
	3.3 Difficulty Models
	3.4 Maze Testing Via Agents
	3.5 Evaluation

	4 Results
	4.1 Tables

	5 Conclusion
	5.1 Future Work

	6 Acknowledgements
	References

