
Research Proposal
Detecting typographic, particle and sentence formation errors in

JLPT N5 sentences using a rules-based system
Ana Verulidze
Earlham College
Richmond, Indiana

averul19@earlham.edu

ACM Reference Format:
Ana Verulidze. 2022. Research Proposal Detecting typographic, particle and
sentence formation errors in JLPT N5 sentences using a rules-based system.
In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,
USA, 4 pages. https://doi.org/

1 Abstract
NLP provides excellent computer assisted language learning re-
sources, however it still remains somewhat underdeveloped for
many languages including Japanese. In order to improve student
learning experience, this paper aims to explore the effectiveness of a
rules based system for detecting typographic, particle and sentence
formation errors in JLPT N5 sentences.

2 Introduction
Computer Assisted Language Learning (CALL) can be referred to
as the study of tools in computer language teaching [4]. Most of the
CALL applications today offer learning resources, but only a small
portion of them provide evaluation. This is because the evaluation
process still heavily depends on the instructor and cannot be fully
performed by a computer at this point [3]. This paper proposes an
improvement to Japanese CALL systems by implementing an error
detection tool. This tool will focus specifically on the following:

• Typographic errors
These types of errors refer to spelling mistakes, but only in
cases when the misspelled word does not have a meaning of
its own. As an example, if the word "びょういん" (Hospital)
is misspelled as "ひょういん", the proposed tool will detect
it as an error, but "びよういん" (Beauty salon) will be con-
sidered correct. The main challenges in this area occur due
to the absence of spacing between words and the usage of
Kanji characters, which combine multiple Hiragana together.
For example, the above mentioned word, "びょういん" can
also be written as "病院" using only Kanji.

• Particle usage
Particles in Japanese text mark words that appear before
them. Each of the particles has a set of rules explaining when

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/

and how they should be used. For example, the particle "de"
follows the location of an event. The subject performing the
event must be followed by either "wa" or "ga" particles, and
the verb indicating the action being performed cannot be
"imasu/arimasu" (to be). This part of the tool will aim to
evaluate how closely such rules are followed.

• Sentence formation
This refers to ensuring that each sentence is completely
formed and ends with a predicate. for example, the sentence
"私はこの喫茶店に友達と会いにきました。" (I came to
this cafe tomeet with a friend") is a correctly formed sentence
since it ends with the verb "to come". Word omissions will
also be considered in this section. For example, we can ommit
"私は" (I + particle) from the above mentioned sentence
without changing the meaning conveyed.

This will be achieved through using a rules-based NLP system. A
rules-based system implies the usage of linguistic rules and forms
rather than statistical analysis. A similar implementation was pro-
posed by Kasmaji et al in 2015. Their design mainly consists of two
parts - implementation of the NLP tools and processing the result.
This can be seen in more detail in Figure 1, where the outlined and
the external sections refer to parts 1 and 2 accordingly. [3].

3 Background
3.1 A brief introduction to the Japanese

sentence structure
Japanese sentence structure is often described as more flexible than
that of many other languages. This is because the word order in
which we can convey a message in Japanese can be easily modified
depending on which part of the sentence we are trying to highlight.
However, there are still a number of constraints we need to consider
when forming a sentence, including ending it with a verb and
keeping parts of the sentence within the boundaries they are held
in [1]. As an example, both of these sentences are valid translate to
"I go to school by bike every day":

• "私は (I + particle)毎日 (every day)自転車で (bike + parti-
cle)学校に (school + particle)行きます (to go)。"

• "私は (I + particle)学校に (school + particle)毎日 (every
day)自転車で (bike + particle)行きます (to go)。"

However, the following are not considered to be grammatically
correct:

• "行きます (to go) 学校に (school + particle) 毎日 (every
day)自転車で (bike + particle)私は (I + particle)。"

https://doi.org/
https://doi.org/

Conference’17, July 2017, Washington, DC, USA Verulidze

Figure 1: Software architecture of Kasmaji et al’s error-
detection and handling tool [3]

• "自転車で (bike + particle)行きます (to go) 毎日 (every
day)私は (I + particle)学校に (to school)。"

Particle usage is one of the major parts of the Japanese sentence
structure. Not only do they occur most frequently compared to
other parts of speech in Japanese sentences, but they also mark
complement phrases and arguments, modify verbs and nouns, and
have semantic roles. In JLPT N5, the most common particles include
the verb modifying particles, complementizer "to", noun modify-
ing particle "no", ga-Adjuncts, direction indicating particles "ni"
and "e" [6]. Japanese spoken and written language also often uses
word omissions, which refer to zero anaphora. While it is not a
requirement, omitting parts of the sentence that can be recovered
from context is a common practice that makes them sound more
natural [3]. As an example, the sentence "私は水を飲みます" (I
am drinking water) can be shortened as "水を飲みます" (Drinking
water), as the subject of this sentence is implied. The proposed
error-detection tool will attempt to detect such cases and suggest
an omission.

3.2 Japanese NLP
Tokenization is an important first step in processing Japanese text
for mood analytics, semantic relatedness, error detection and more.

Tokenization splits meaningful parts of sentences (that are often
individual words) to prepare text for further analysis. This process
usually faces challenges that depend on the type of language used
in text. The main challenges in tokenizing Japanese texts occur be-
cause this language belongs to the unsegmented and agglutinative
categories, which suggests that words have no clear boundaries
and can be divided into smaller sub-parts [2]. Preprocessing is fol-
lowed by morpheme, lexical and syntax analysis of the resulting
text. Kasmaji et al’s error detection and handling tool uses JUMAN
and KNP due to their ability to provide detailed semantic and word
category-related information.

3.2.1 Result Extraction Module As a start, the Result Extraction
module is implemented. This is where the NLP tools are defined
and implemented. This module also ensures that the output text is
modified to be compatible with the following modules. The input
text is sent to JUMAN, which provides morphological analysis,
and its output is then used by KNP, which generates a syntax
tree represented as a table. This tree structure is depicted on the
leftmost rectangle of Figure 3. It places the verb as the root, and
other parts of speech as its children. In this case, "日曜日に"
(on Sunday) "うちで" (at home), and "映画を" (movie) are the
children of "見ました" (to watch). Based on this information
we can deduce that the input sentence was "日曜日にうちで
映画をみました。" (I watched a movie at home on Sunday).
The raw analysis results are stored and modified into a structured
form. The initial transformed data splits the particles "に", "で"
and "を" from "日曜日に","うちで" and "映画を" in that order
and associates each word followed by a particle with the verb
(watched on Sunday, watched at home, watched a movie) . The
Rule-Based transformation applies grammatical rules and indicates
what types of words are required with each particle to form a
valid sentence (time + particle "に", place + "で", * + "を". The *
sign in this case indicates that there can be many options in this
position). The author describes the smallest data structure used
as a token, which stores information such as the dictionary form,
part-of-speech or inflection of meaningful morphological units. A
set of tokens associated with the same sentence/phrase are referred
to as a chunk, which stores data regarding its connection with a
different chunk.

3.2.2 Evaluation Module Creating the syntax tree is followed by
the evaluation process, which deals with sentence completeness
and structure. Sentence completeness evaluation provides a brief
summary of errors detected in text while later modules focus on
expanding this information. The structure evaluation extracts in-
formation regarding the correctness of grammar. It covers aspects
including particle usage, affix usage, verb and adjective inflections
and others. The results of Structure evaluation heavily depends on
the tree structure provided by the KNP module during the syntax
analysis process. JUMAN and KNP allow grammatically incorrect
input texts in order to produce the syntax tree, which implies the
requirement of writing rules in determining the validity of the tree
structure. Figure 2 gives a visual representation of this evaluation
process starting with the KNP output, transforming the data, and
applying grammar rules [3].

Research Proposal
Detecting typographic, particle and sentence formation errors in JLPT N5 sentences using a rules-based system Conference’17, July 2017, Washington, DC, USA

Figure 2: Steps in the Structure evaluation unit [3]

4 Design
The implementation of the error-detecting tool will have preprocess-
ing, analysis and evaluation phases. The preprocessing phase will
cover NLP tool implementations including Fugashi [5], Sudachipy,
JUMAN++ [7] and KNP [8]. JUMAN++ is an improved version of
JUMAN, which was used in Kasmaji et al’s implementation. The
analysis phase will be divided into two sections that deal with
spelling errors/word omissions and sentence formation/particle us-
age separately. Evaluation phase will take care of describing errors
and possibly proposing improvements.

4.1 Preprocessing Phase
Preprocessing phase will cover two distinct sections: syntax tree
production phase and a mapping phase. In the syntax tree produc-
tion phase, input text will be sent for morphological analysis to
JUMAN++, whose output will be modified and sent to KNP, that
will produce a syntax tree. In the mapping section, first, Fugashi
will be used to tokenize the input text and map each token with
a part of speech. Then, some tokens may be combined to provide
meaningful morphological units. As an example, Japanese tokeniz-
ing tools split “図書館で勉強しています” (I am studying at the
library) as “図書館 (library)で (particle indicating location)勉強
(study, noun)し (root of "to do")て (te-form indicating the tense)
い (morpheme)ます (polite form)”. In order to make dictionary
look ups simpler, “勉強しています” will be combined into a single
token. This will be done through my previously implemented word
splitting tool. A visual representation of the preprocessing phase
can be seen on Figure 3.

4.2 Analysis Phase
In the analysis phase, similarly to Kasmaji et al’s implementation,
KNP syntax tree output will be processed. The child nodes in the
tree will be split into words and particles that follow them. After
that, Fugashi will be used to determine parts of speech of each of
these words, and grammar rules will be applied to check accuracy.
In this case, we will be comparing the grammatically correct parts
of speech with the extracted parts of speech. This will help evaluate
how well the student uses particles. At the same time, we will
be able to determine whether the sentence structure is valid, by
allowing child nodes in the syntax tree to be ordered in any way as
long as they are followed with the root. It is possible that sentences
may contain more than one verb, in which case multiple syntax
trees will be produced for each of the connecting sections within the
sentence, and the same rules will be applied separately. For example,
the following sentence: “猫の名前をポキにします、この名前
はかわいいと思いますから” (I will name my cat Poki, because I

Figure 3: Steps in the Preprocessing Phase

think this is a cute name) will produce two syntax trees with roots
“します (to do, in this case - to name) and思います (to think)”. In
this phase we will also take care of the combined tokens provided by
the word splitting tool. These words will be compared to a dataset
extracted from Sudachipy Dictionary, which Fugashi can directly
access after importing the specific package. This implementation
will use regular expressions to detect possible correct versions of
the misspelled word. Using parts of speech provided by Fugashi,
the subject and object(s) of the sentence will also be determined, as
well as other repetitive words. This data will be saved for further
use in the feedback text. A visual representation of the Analysis
phase can be viewed on Figure 4.

4.3 Evaluation and User interface
The evaluation phase consists of combining results from the syntax
tree processing and the word-splitting output processing. In this
case, combining refers to extracting data from both processes and
modifying it to make it user friendly. Possible errors and solutions
will be summarized together in a string that we can output to the
user. The user interface will be created using either Django or Flask,
since all of the NLP tools used are supported in Python. This web
application will consist of input and output text boxes and a few
additional buttons that let the user check the validity of their input
text. The output text box will contain the feedback processed by
the system.

5 Budget and Risks
This project will use Juman++ [7], KNP [8], Fugashi [5], Sudachipy,
Django or Flask, all of which are freely available online, therefore
there will be no costs associated with it. The major risk we may
encounter will be ensuring the validity of the feedback provided
by the tool. Considering that I am still learning Japanese, there is
a chance that I will miss some errors. To resolve this issue, I will
seek feedback from native speakers and language professors.

Conference’17, July 2017, Washington, DC, USA Verulidze

Figure 4: Steps in the analysis phase

6 Timeline
• Week 1 - Create the web interface for the tool. Functionally,
the application at this point may only include text boxes and
a button which returns the input text without transforming
it in any way. The application design aspect should be fairly
complete.

• Week 2 - Work on the Preprocessing Phase - syntax tree
production using JUMAN++ and KNP

• Week 3 -Work on the Preprocessing Phase - mapping section
and combining tokens

• Week 4 - Move on to the Analysis phase for the syntax tree,
transform the output to make it easier to read and process

• Week 5 - implement a data structure responsible for applying
grammar rules and use it to process the data given by the
syntax tree

• Week 6 - Get the first version of the tool up on the web appli-
cation. This version will not provide feedback, but it should
list sentence structure and particle usage related errors

• Week 7 - Continue working on the analysis phase, focusing
on spelling errors and detecting unnecessary words

• Week 8 - Combine all previous work, test and debug
• Week 9 - Move on to the evaluation phase: combine results
into a feedback string and display it on the web application

• Week 10 - User testing. Have Japanese language students
test the tool and provide feedback

• Week 11 - Work on the paper and the feedback provided by
the students

• Week 12 - Continue working on the paper,finalize the error-
detection tool

• Week 13 - Second phase of user testing.Work on the feedback
provided

• Week 14 - finalize and polish

7 Acknowledgement
I would like to express my gratitude for the unwavering guidance
and constructive criticism provided by Dr. David Barbella.

References
[1] Francis Bond and Timothy Baldwin. 2016. Introduction to Japanese computational

linguistics. Readings in Japanese Natural Language Processing. CSLI Publications,
Stanford (2016), 1–28.

[2] Subbu Kannan, Vairaprakash Gurusamy, S Vijayarani, J Ilamathi, M Nithya, S
Kannan, and V Gurusamy. 2014. Preprocessing techniques for text mining. In-
ternational Journal of Computer Science & Communication Networks 5, 1 (2014),
7–16.

[3] Aji Nugraha Santosa Kasmaji and Ayu Purwarianti. 2015. Employing natural
language processing to analyse grammatical error in a simple Japanese sentence.
In 2015 International Conference on Electrical Engineering and Informatics (ICEEI).
IEEE, 82–86.

[4] Michael Levy. 1997. Computer-assisted language learning: Context and conceptual-
ization. Oxford University Press.

[5] Paul McCann. 2020. fugashi, a Tool for Tokenizing Japanese in Python. arXiv
preprint arXiv:2010.06858 (2020).

[6] Melanie Siegel. 1999. The syntactic processing of particles in Japanese spoken
language. arXiv preprint cs/9906003 (1999).

[7] Arseny Tolmachev, Daisuke Kawahara, and Sadao Kurohashi. 2020. Design and
structure of the Juman++ morphological analyzer toolkit. Journal of Natural
Language Processing 27, 1 (2020), 89–132.

[8] Arseny Tolmachev, Hajime Morita, and Sadao Kurohashi. 2016. A grammar and
dependency aware search system for japanese sentences. Corpus 1, 2 (2016), 3–4.

	1 Abstract
	2 Introduction
	3 Background
	3.1 A brief introduction to the Japanese sentence structure
	3.2 Japanese NLP

	4 Design
	4.1 Preprocessing Phase
	4.2 Analysis Phase
	4.3 Evaluation and User interface

	5 Budget and Risks
	6 Timeline
	7 Acknowledgement
	References

