
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Building a Textual Database for the Generative Design in Minecraft
Competition:
Methods for textual labeling, building and room detection, and future work

EGAN GRAY, Earlham College, USA

ACM Reference Format:

Egan Gray. 2018. Building a Textual Database for the Generative Design in Minecraft Competition:Methods for textual labeling,
building and room detection, and future work . 1, 1 (May 2018), 7 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 ABSTRACT

This paper presents the structure and design of a novel open-source textual database named the Brick Database for
Minecraft settlements. Aimed at addressing the current lack of comprehensive datasets for model training in the
Generative Design in Minecraft Competition (GDMC), this study explores the methodologies and potential challenges
in creating a textual database and automatically detecting buildings and rooms.

2 INTRODUCTION

The Generative Design in Minecraft Competition (GDMC)[1] is a yearly event aiming to facilitate the creation of
engaging settlements in Minecraft via procedural generation. Although GDMC does offer some beneficial tools for block
placement and extraction, such as GDMC-HTTP[2] and GDPC[3], it does not supply a complete dataset of settlements
or buildings for model training.

In addition, the GDMC Impressions[4] showed a common theme. Many different methods were applied, but every
project had some variation of the same issue– the robots misunderstood why we place things in the contexts we do.
Paths would be dangerously high and narrow, foundations would be unreasonably big, bridges would be built over tiny
amounts of water, doorways would be blocked by leaves, etc. The overarching theme is that while the AI could imitate
what a house with a doorway looked like, or what a bridge looks like, it couldn’t imitate not the logic of why we have
doors that can’t be obstructed and bridges that we won’t fall off.

This means that not only do we need a database of Minecraft buildings, but we also need semantic and textual labels
for buildings. There is two open source database [5][6] for this purpose, but they were built under a time constraint and
are generally low-quality building with poor labeling.

This article proposes a structure for an open-source textual database—dubbed the Brick Database—for Minecraft
settlements. It will delve into the methodologies, challenges associated with the automatic detection of buildings and
rooms, and potential applications of the Brick Database in the realm of generative design.

Author’s address: Egan Gray, Earlham College, 801 W National Dr, Richmond, Indiana, USA, 47374, eewhite19@earlham.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Egan Gray

3 BRICK DATABASE FORMAT

This section outlines the textual labels and data structures used by Brick Database.

3.1 Textual labels

Brick Database uses 3 types of textual labels:

3.1.1 Aesthetic. Aesthetic labels have two categories, Meta-Aesthetic and settlement-aesthetic. Aesthetic tags facilitate
the establishment of contextual relationships between structural and aesthetic blocks in the settlements.

(1) Meta-Aesthetic: This is the broad aesthetic of the map, like “Modern”, “Medieval” or “Futuristic”.
(2) Settlement-Aesthetic: A settlement’s aesthetic may be more specific than its Meta Aesthetic. For example, a

Medieval Settlement’s style could range from Nordic, Ruined, Dark Wood, etc.

3.1.2 Function. Buildings, floors, and rooms all have their own unique function labels. Function labels are used to
establish context on which rooms belong in which buildings, and which blocks should be placed in which room.

(1) Building function: General building purpose, like “Inn”, “Hospital” or “Home”.
(2) Floor function: These are very basic and labels are set by the number of floors in the building. These functions

are useful later during room detection. A 1-level house level is saved as a “single floor”, if the building contains
more than 1 floor each floor is labeled hiercharly: Multifloor bottom:Multifloor middle:Multifloor top

(3) Room Function: Room functions represent the purpose of the room, like “bar”, “bed room” or “shop”, “craft
room”, etc. Rooms may also have sub-functions, like “craft room:alchemy” or “craft room:smithy”.

3.1.3 Block Type. Each block may be one of the four following types. The block type is used during building and room
detection.

(1) Structure: Blocks typically used for the construction of the building. Stairs, wood, chisled stone, etc.
(2) Function: Blocks placed in a room depending of the function of the room. Ex: Beds for bedrooms, Furnace for

kitchens.
(3) Aesthetic: Aesthetic blocks are placed depending on the settlement’s aesthetic, like “cobwebs” and “skulls” for a

ruined aesthetic, and “snow” for cold aesthetics
(4) Trash: Blocks we don’t save as part of the building, like dirt, sand, and naturally occurring stone.

3.2 Data Structure

A settlement stores buildings use a hierarchical collection of groups. The settlement class contains the settlement’s
Meta Aesthetic and Sub-Aesthetic, as well as pointers of its children building classes and arrays. Each building has a
function and pointers to all level arrays and classes inside the building. Each level class pointers to all room classes.
Finally, the Room class contains the room’s coordinates, its main and sub-functions, and lists of all functional and
aesthetic blocks. All Minecraft maps, buildings, levels, and rooms are saved as NumPy arrays. All labels, arrays, and
classes are saved in a .HPF5 database.

Input: 3D array of Minecraft Map
Settlement: Root Node (Position, Bounds, Aesthetics tags, Building list, Pallete) ->
Building: Node (Position, Bounds, Type, Function, Parent, Level list)->
Level: Node (Position, Bounds, Function, Parent, Room list)->

Manuscript submitted to ACM



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Building a Textual Database for the Generative Design in Minecraft Competition:
Methods for textual labeling, building and room detection, and future work

3
Room: Node (Position, Bounds, Function, Parent, Aesthetic tags, Blocks) ->
Block: Node (Block ID, Position, State, Data, Parent)

4 BRICK DATABASE BUILDER

The Brick Database Builder, not to be confused with the Brick Database, is a series of Python tools used to help us
automate building the dataset. In this section, we will discuss palettes, building detection, and room/level auto-detection.

4.1 Palletes

Palettes are a way of saving time when checking block types. The Palette class in Brick Database Builder contains
every Minecraft block ID sorted into 5 categories– Structural, Trash, Functional, Aesthetic and Magic. Structural, Trash,
Functional, Aesthetic blocks we can safely bet the type of. For example, a bed will always be a functional block. Magic

blocks are any blocks that can change depending on context. For example, sometimes flowers are aesthetic type blocks,
but other times they can be trash blocks. Magic blocks ask for researcher input to specify which type the block id should
be saved under during generation. Palettes are highly organized and reorderable, so they can be easily reconfigured.

4.2 Buidling Detection

Buildings have two types, houses and structures. Houses (Fig.1a) are any type of building that has levels and rooms.
Structures (Fig.1b) are buildings that are less conventional, like bridges, castle walls and churches which may not be so
easily described as arrays of levels and rooms. Building detection has two methods:

• Selector-Detection: Selector Detection involves manually marking each building that should be saved. House-type
buildings are labeled with “Lime Wool” blocks, and Structure type buildings are labeled with “Cyan Wool”
blocks. These blocks are then appended to a search list, which appends the block to a search queue. The search
queue pops the top value it, and each adjacent1 block that is structural, functional, or aesthetic type are appended
to the search queue. All connected coordinates are saved as part of the building. Selector detection struggles
with issue 4.5.1. This method involves hand-selecting data, so these issues may be addressed by deleting nearby
blocks that could cause errors.

• Auto-Detection: This method is similar to Selector-Detection, except instead of wool blocks each building is
found by a pre-set selector. This selector should be something most buildings have, like doors or windows. This
method involves no input from the researcher, but issue4.5.1 and issue?? are more common with this method,
as the researcher may not hand-pick buildings and sanitize the surrounding areas for blocks that could cause
errors.

4.3 Level Auto-Detection

Fundamental Concept: The vertical axis (y-axis) of a given floor is likely to contain a larger proportion of building
materials compared to the immediate areas above or below it.

The detection of floors is achieved by identifying y-coordinates within the building array that contain the greatest
concentration of structure-type blocks. Consider a structure with three levels:

• Level 1: Contains 10% structure blocks, 20% function blocks, and 70% empty space.
• Level 2: Contains 70% structure blocks, 1% function blocks, and 29% empty space.

1Adjacent: block x(-1, +1),y(-1, +1), z(-1, +1)

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Egan Gray

(a) House (b) Structure

Fig. 1. Building types

• Level 3: Contains 10% structure blocks, 30% function blocks, and 60% empty space.

Given that y-coordinates containing a floor will typically exhibit a higher concentration of structure blocks, it’s
reasonable to deduce that Level 2 includes a floor. When the coordinates of these floors are determined, the spaces
between them are segmented into new "level" arrays, which are later employed for room detection.

This step is critical, as any inaccuracies may result in flawed room detection. Although this method proves generally
successful in detecting floors, it’s crucial to consider and address potential edge cases since incorrect level determination
can lead to inaccurate room detection. Therefore, researchers are advised to verify or amend the automatically detected
floor coordinates prior to proceeding with Room Detection.

4.4 Room detection

The procedure for room detection for each level is as follows:

(1) Generate floor plan This is a 2D array created from the 3D level array, with each index of the graph being
either a “wall” (Fig.2a black) or "not wall" (Fig.2a white)

(2) Color empty areas All white blocks are given separate colors depending on if area are connected with each
other.

(3) For each colored area:
(a) Scan z-axis: For each x coordinate of color, check (highest_Z-axis+1, x) and(lowest_Z-1, x) blocks are are

walls. If they are, return true, else return false. Fig.2c
(b) Scan x-axis: For each z coordinate of color, check (Z, highest_X+1) and(Z, lowest_X+1) blocks are walls. If

they are, return true, else return false. Fig.2d

4.5 Issues

4.5.1 Connected buildings. If a building has a road made out of the same material as its building or has a fence
connecting it to another building, the building selection will be faulty.

4.5.2 Open rooms. The room detection method only works on rooms that have walls on all four sides. Buildings like
Fig.?? contain exterior rooms that will not be detected, while buildings like Fig.?? has a room with an open section,
which means it would not be detected as an interior area.
Manuscript submitted to ACM



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Building a Textual Database for the Generative Design in Minecraft Competition:
Methods for textual labeling, building and room detection, and future work

5

(a) Generate floor plan (b) Color separate areas (c) Scan for walls(z axis) (d) can for walls (x axis)

Fig. 2. Room Detection process

(a) Buildings connected by paths (b) Buildings connected by walls

Fig. 3. Room Detection process

4.5.3 To trash or not to trash. Some trash blocks are used as structural blocks, such as a settlement that uses gravel for
both roads and structural blocks, or floors that have dirt, like in barns (Fig.4).

Fig. 4. Should dirt be saved?

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Egan Gray

4.5.4 Level detection . Level detection is mostly effective, but still occasionally fails, as the percentage difference
of structural blocks between floors and walls varies depending on the size of the structure. If the target percentage
difference is too low, it may detect roofs or rooms as floors, but if the percentage is too high, it may not detect any
floors at all. Because correctly set levels are crucial for successfully detected rooms, all levels must be double-checked
by the research when scanning before proceeding to room detection.

4.5.5 High quality maps. There are a vast number of Minecraft maps and building packs, but many of these buildings
have empty interiors. Adventure maps meant for exploration tend to have more buildings with decorated interiors, but
finding good adventure maps is difficult. Empty houses are still useful for exterior generation, but decorated interiors
are required for Brick Method to as effective as possible.

5 FUTUREWORK

5.1 Automated Building Detection

As of writing, every building in the database requires manual building selection, level double-checking, and labeling of
room and building functions. A building on average requires anywhere between 4-15 manual pieces of data entry per.
At this rate, it would take anywhere between 40,000 - 150,000 manual entries for a 10,000-building database.

As discussed in 4.5, architecture is full of edge cases. While it is possible to create algorithms that work for 80% of
buildings, edge cases make it near impossible for efficient detection that is completely effective. This naturally puts a
bottleneck on the speed we can build our dataset with. Many generative methods such as GANs and CNNs are very
data-hungry, and the more data we have the better our output could be.

For proper detection of buildings, we require a training a new training set. The training set should contain at least
5,000 valid examples of buildings and at least three times invalid examples. Invalid examples should range from partially
selected buildings, roads, and terrain like trees and mountains. Once this data set is built we can use it to train a building
classification agent using a variety of methods, like 3D Convulention, Recurrent or Reinforcement learning.

5.2 Possible uses for generation

Once fully built, there are many ways this dataset could be used to train generative systems to create new and interesting
buildings. In this section we will be briefly discusses methods of generation that naturally lend themselves to this type
of textual organized data. Recurrence neural networks could create buildings level-by-level, taking the initial function
of a building and its first floor, then generating a 2D array for the y-axis immediately above it. This process is repeated
until the building is complete. Another possible method to generation could be a Knowledge-Based System, using
buildings as its knowledge base and the connection level sizes, room placement, and building function. Once automatic
building classification is accurate, it could be used as a discriminator agent for a GAN model. A discriminator model
and a generator model would allow self-teaching, which could result in more unique buildings.

Finally, once settlement generation has become automatic with the simple input of a map and the settlement aesthetic,
the settlement generator could be paired with two “story-telling” language models. One model creates and maintains a
story arch, while the second Dungeon Master model spawns settlements, mobs and resources depending on the story
and player stats. This could mean creating an ambush when the player has gone too long without conflict, spawning a
village when the player is lost and low on resources, or more. Advancements in language models, like Auto-GPT could
allow fully interactive NPC’s as already demonstrated possible by cite. These NPCs remember previous interactions
and could return personall, local and story karma score. Positive or helpful interactions that meet the NPC’s goal
Manuscript submitted to ACM



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Building a Textual Database for the Generative Design in Minecraft Competition:
Methods for textual labeling, building and room detection, and future work

7
boost karma, and negative, aggressive, non-helpful, or nonsensical interactions decrease the player’s Karma score. The
amount of positive/negative interactions the player has total effects the story karma, which changes the plot of the
story, the chances of different events happening and even the aesthetic of buildings.

6 A NOTE TO THE READER

Brick Database Builder will be open-source in June, 2023, and the success of the project is dependent on the size and
accuracy of the dataset. Brick Databse Builder comes with a variety of modular detection tools that makes building and
adding to this dataset very simple, requiring no coding experience to use. A dataset is only as good as it’s datapoints,
and if you a Minecraft builder or GDMC engineer, we urge you to add your data to the Brick Database, so our robots
can build better houses.

7 CONCLUSION

In conclusion, the development of a comprehensive, textual database for Minecraft settlements, the Brick Database, is
an important step towards automated and generative design in Minecraft. This work has provided an analysis of the
complexities and challenges involved in the creation of such a dataset, including the intricacies of building and room
detection, and the importance of aesthetic, functional, and structural elements.

While the Brick Database and its building tools are promising, they are not without their issues. The accurate
detection of buildings is a challenge that we must continue to address. However, despite these issues, the Brick Database
still stands as a valuable resource for researchers and developers in participating in GDMC.

As we look forward to the future of this project, the need for a robust, automated building classification system is
evident. Such a system will not only aid in the rapid expansion of the datasbase but also improve the precision of the
generative models, leading to more exciting creative output.

8 ACKNOWLEDGEMENTS

Special thanks to Charlie Peck and Malik Karim Barrett. Your assistence was invaluable.

REFERENCES
[1] Christoph Salge, Michael Cerny Green, Rodgrigo Canaan, and Julian Togelius. Generative design in minecraft (gdmc): Settlement generation

competition. In Proceedings of the 13th International Conference on the Foundations of Digital Games, FDG ’18, New York, NY, USA, 2018. Association
for Computing Machinery.

[2] Niels-NTG and Nikigawlik. Minecraft http interface mod.
[3] Nikigawlik. Minecraft http interface python.
[4] Christoph Salge, Claus Aranha, Adrian Brightmoore, Sean Butler, Rodrigo De Moura Canaan, Michael Cook, Michael Green, Hagen Fischer, Christian

Guckelsberger, Jupiter Hadley, Jean-Baptiste Herve, Mark Johnson, Quinn Kybartas, David Mason, Mike Preuss, Tristan Smith, Ruck Thawonmas,
and Julian Togelius. Impressions of the gdmc ai settlement generation challenge in minecraft. In Proceedings of the 17th International Conference on
the Foundations of Digital Games, FDG ’22, New York, NY, USA, 2022. Association for Computing Machinery.

[5] Jonathan Gray, Siddharth Goyal, C. Lawrence Zitnick, Arthur Szlam, and Demi Guo. Minecraft house. Jul 2019.
[6] Jonathan Gray, Siddharth Goyal, C. Lawrence Zitnick, Arthur Szlam, and Demi Guo. Minecraft segementation. Jul 2019.

Manuscript submitted to ACM


	1 Abstract
	2 Introduction
	3 Brick Database Format
	3.1 Textual labels
	3.2 Data Structure

	4 Brick Database Builder
	4.1 Palletes
	4.2 Buidling Detection
	4.3 Level Auto-Detection
	4.4 Room detection
	4.5 Issues

	5 Future Work
	5.1 Automated Building Detection
	5.2 Possible uses for generation

	6 A note to the reader
	7 Conclusion
	8 Acknowledgements
	References

