Detecting typographic, particle and sentence formation errors in
JLPT N5 sentences using a rules-based system

Ana Verulidze
Earlham College
Richmond, Indiana
averull19@earlham.edu

1 Abstract

NLP provides excellent computer-assisted language learning re-
sources. However, it still remains somewhat underdeveloped for
many languages, including Japanese. In order to improve the stu-
dent learning experience, this paper aims to explore the effective-
ness of a rules-based system for detecting typographic, particle,
and sentence formation errors in JLPT N5 sentences.

2 Introduction

Computer Assisted Language Learning (CALL) can be referred to
as the study of tools in computer language teaching [4]. Most of the
CALL applications today offer learning resources, but only a small
portion of them provide evaluation. This is because the evaluation
process still depends heavily on the instructor and cannot be fully
performed by a computer [3]. This paper proposes an improvement
to Japanese CALL systems by implementing an error detection tool.
This tool will focus specifically on the following:

e Typographic errors

These types of errors refer to spelling mistakes, but only in
cases when the misspelled word does not have a meaning of
its own. As an example, if the word "TF & 9 \y A" (Hospital)
is misspelled as "U* & 9 VYA ", the proposed tool will detect
it as an error, but "' & 7 \y A" (Beauty salon) will be con-
sidered correct. The main challenges in this area occur due
to the absence of spacing between words and the usage of
Kanji characters, which combine multiple Hiragana together.
For example, the above mentioned word, "U' & 9\ A" can
also be written as " J#f" using only Kanji.

Particle usage

Particles in Japanese text mark words that appear before
them. Each of the particles has a set of rules explaining when
and how they should be used. For example, the particle "de"
follows the location of an event. The subject performing the
event must be followed by either "wa" or "ga" particles, and
the verb indicating the action being performed cannot be
"imasu/arimasu” (to be). This part of the tool will aim to
evaluate how closely such rules are followed.

Sentence formation

This refers to ensuring that each sentence is completely
formed and ends with a predicate. for example, the sentence
L COBRIEICKEE 20IcF X L7z " ([cameto
this cafe to meet with a friend") is a correctly formed sentence
since it ends with the verb "to come". Word omissions will
also be considered in this section. For example, we can ommit
"F.1d" (I + particle) from the above mentioned sentence
without changing the meaning conveyed.

Input

Sentence | g T — Dictionary)}——— !
! S i |
" NLP Tools Analysis Resuk }
Extraction Modules| i
: ety
Morpheme Lexical 2 4 /7 Morpheme
Analyzer Analyzer i _(_ Rule and ‘
. Grammar |
I e
Sentence's P < i -
—! Completeness Syntax il _{ R{ﬂe sl)
Evaluation Modhule Analyzer \. B _
J oy oy
\
\
. - S
E [Sememe's Syatax o e
(Answer Sentence | Tree Structure f—— -i Particle Usage)
_ PattemData / IE\'aluaﬁon Module _ Rules
— _//'-' — _-,.-/
|
:_ P § Sentence
Functional Role
Evaluation Module
System
Responses

Figure 1: Software architecture of Kasmaji et al’s error-
detection and handling tool [3]

The error detection will be achieved through using a rules-based
NLP system. A rules-based system implies the usage of linguistic
rules and forms rather than statistical analysis. A similar imple-
mentation was proposed by Kasmaji et al in 2015. Their design
mainly consists of two parts - implementation of the NLP tools and
processing the result. This can be seen in more detail in Figure 1,
where the outlined and the external sections refer to parts 1 and 2
respectively. [3].

3 Background

3.1 A brief introduction to Japanese sentence
structure

Japanese sentence structure is often described as more flexible than
that of many other languages. This is because the word order in
which we can convey a message in Japanese can be easily modified
depending on which part of the sentence we are trying to highlight.
However, there are still a number of constraints we need to consider
when forming a sentence, including ending it with a verb and
keeping parts of the sentence within the boundaries they are held
in [1]. As an example, both of these sentences are valid and translate
to "I go to school by bike every day":

o "N (I + particle) & H (every day) H i H T (bike + parti-
cle) “=F%1Z (school + particle) 1T & % 7 (to go), "

o "R (I + particle) 22F%IC (school + particle) f H (every
day) HH#i BT (bike + particle) 1T & £ 3 (to go), "

However, the following are not considered to be grammatically
correct:

o "ITE £ (to go) 2#FEIC (school + particle) i H (every
day) HH¥5HL T (bike + particle) F,13 (I + particle), "

o "H iz Hi T (bike + particle){T & £ 9 (to go) & H (every
day) F\1E (I + particle) 22F%1Z (to school), "

Particle usage is one of the major parts of the Japanese sentence
structure. Not only do they occur most frequently compared to
other parts of speech in Japanese sentences, but they also mark
complementary phrases and arguments, modify verbs and nouns,
and perform semantic roles. In JLPT N5, the most common particles
include the verb-modifying particles, complementizer "to", noun
modifying particle "no", ga-Adjuncts, direction indicating particles
"ni", and "e" [6]. Japanese spoken and written language also often
uses word omissions, which refer to zero anaphora. While it is not
a requirement, omitting parts of the sentence that can be recovered
from context is a common practice that makes them sound more
natural [3]. As an example, the sentence "f\|ZKZ & £ 3" (I
am drinking water) can be shortened as "/K% il 4 X 3" (Drinking
water), as the subject of this sentence is implied. The proposed
error-detection tool will attempt to detect such cases and suggest
an omission.

3.2 Japanese NLP

Tokenization is an important first step in processing Japanese text
for mood analytics, semantic relatedness, error detection, and more.
Tokenization splits meaningful parts of sentences (that are often
individual words) to prepare the text for further analysis. This pro-
cess usually faces challenges that depend on the type of language
used in the text. The main challenges in tokenizing Japanese texts
occur because this language belongs to the unsegmented and ag-
glutinative categories, which suggests that words have no clear
boundaries and can be divided into smaller sub-parts [2]. Prepro-
cessing is followed by morpheme, lexical and syntactical analysis
of the resulting text. Kasmaji et al’s error detection and handling
tool uses JUMAN and KNP due to their ability to provide detailed
semantic and word category-related information.

KNP Output Initial Transformed Data Rule-Based Transformed
Data
BRI

357 BiER || REUL B |IC| B3

- = - - = - =

BEE 55 T|RELE B |T|R3

B |z e Z| 83

s=Lr BRE BEL * B

Figure 2: Steps in the Structure evaluation unit [3]

3.2.1 Result Extraction Module As a start, the Result Extraction
module is implemented. This is where the NLP tools are defined
and implemented. This module also ensures that the output text is
modified for compatibility with the following modules. The input
text is sent to JUMAN, which provides morphological analysis,
and its output is then used by KNP, which generates a syntax tree
represented as a table. This tree structure is depicted on the leftmost
rectangle of Figure 3. It places the verb as the root, and other parts of
speech as its children. In this case "H I HIZ" (on Sunday)" 5 5 ¢"
(at home), and "BE[%" (movie) are the children of "L % L /="
(to watch). Based on this information we can deduce that the input
sentence was "HIEHIC 9 HCREZ A £ L /=, " (Iwatched a
movie at home on Sunday). The raw analysis results are stored and
modified into a structured form. The initial transformed data splits
the particles "|Z","C"and "% " from "HHEE HIZ"' D 5 T" and "Bl
[li|% " in that order and associates each word followed by a particle
with the verb (watched on Sunday, watched at home, watched a
movie). The Rule-Based transformation applies grammatical rules
and indicates what types of words are required with each particle
to form a valid sentence (time + particle "IC", place + "C", * + "
The * sign in this case indicates that there can be many options
in this position). Kasmaji et al describe the smallest data structure
used as a token, which stores information such as the dictionary
form, part-of-speech, or inflection of meaningful morphological
units. A set of tokens associated with the same sentence/phrase are
referred to as a chunk, which stores data regarding its connection
with a different chunk.

3.2.2 Evaluation Module Creating the syntax tree is followed by
the evaluation process, which deals with sentence completeness
and structure. Sentence completeness evaluation provides a brief
summary of errors detected in text while later modules focus on
expanding this information. The structure evaluation extracts in-
formation regarding the correctness of grammar. It covers aspects
including particle usage, affix usage, verb and adjective inflections,
and others. The results of structure evaluation heavily depend on
the tree structure provided by the KNP module during the syntax
analysis process. JUMAN and KNP allow grammatically incorrect
input texts in order to produce the syntax tree, which implies the
requirement of writing rules in determining the validity of the tree
structure. Figure 2 gives a visual representation of this evaluation
process starting with the KNP output, transforming the data, and
applying grammar rules [3].

4 Design

The implementation of the error-detecting tool will have prepro-
cessing, analytical, and evaluative phases. The preprocessing phase

Input
sentence

Fugashi + Sudachipy
tokenizing

A
L Y

Combining tokens
for dictionary
searches

Mapping tokens
with parts of
speech

~

Doubly linked list —l

Applying grammar Evaluating the Detecting Dictionary lookups
rules for particle sentence structure insignificant parts for spelling errors
usage of the sentence

(L] J

Figure 3: Data Architecture Diagram
(1) Round shape refers to data
(2) Rectangular shape refers to the process
(3) Colors from dark pink to green indicate how far we in the
process we are

will cover NLP tool implementations including Fugashi [5] and
Sudachipy. The analytical phase will be divided into two sections
that deal with spelling errors/word omissions and sentence forma-
tion/particle usage separately. The evaluative phase will take care
of describing errors and possibly proposing improvements.

4.1 Preprocessing Phase

The preprocessing phase will cover two distinct sections: a doubly
linked list production phase and a mapping phase. This is where the
NLP tools are defined and implemented, this module also ensures
that the output text is modified for compatibility with the following
modules. In the doubly linked list production phase, the input text
will be tokenized using Fugashi and Sudachipy. In the mapping
section, first, Fugashi and Pykakasi will be used to map each to-
ken with a part of speech. Then, some tokens may be combined to
provide meaningful morphological units. As an example, Japanese
tokenizing tools split “[X| 35 A TH155 L TV £ 97 (I am studying
at the library) as “[X| 2 £f (library) T (particle indicating location)
UG (study, noun) L (the root of "to do") C (te-form indicating the
tense) \ (morpheme) & 3 (polite form)”. In order to make dictio-
nary searches simpler, “f/15% L T\ £ 3~ will be combined into a
single token. This will be done through the previously implemented
word-splitting tool. A visual representation of the preprocessing
phase can be seen in Figure 4.

4.2 Analytical Phase

In the analytical phase, the input stored as a doubly linked list struc-
ture will be processed. Fugashi will be used to determine parts of
speech of each of these words and grammar rules will be applied to
check accuracy. In this case, grammatically correct parts of speech

Input

sentence

Fugashi + Sudachipy
tokenizing

Al
L A

Combining tokens
for dictionary
searches

Mapping tokens
with parts of
speech

~

Doubly linked list

Figure 4: Steps in the Preprocessing Phase

will be compared to the extracted parts of speech. This will help
evaluate how well the student uses particles. At the same time, by
allowing child nodes in the list to be ordered in any way as long as
they are followed by the main verb, the sentence structure validity
will be determined. It is possible that sentences may contain more
than one verb. However, a combined use of Fugashi and Pykakasi
allows us to determine primary and secondary verbs. For example,
the following sentence: ‘D ZHiZ R ¥ICL £F. ZDHAH]
I buvn BV E9H 57 (I will name my cat Poki, because
I think this is a cute name) has an auxiliary verb “L ¥ 3" (to do,
in this case - to name) and primary verb &\ 7§ (to think)”. In
this phase, the combined tokens provided by the word-splitting
tool will be compared to a dataset extracted from Sudachipy Dictio-
nary, which Fugashi can directly access after importing the specific
package. This implementation will use regular expressions to de-
tect possible correct versions of the misspelled word. Using parts
of speech provided by Fugashi, the subject, and object(s) of the
sentence will also be determined, as well as other repetitive words.
This data will be saved for further use in the feedback text. A visual
representation of the Analytical Phase can be viewed in Figure 5.

4.3 Evaluation and User interface

The evaluation phase consists of combining results from the syntax
tree processing and the word-splitting output processing. In this
case, combining refers to extracting data from both processes and
modifying it to make it user-friendly. Possible errors and solutions
will be summarized together in a string that will be outputted for the
user. The user interface is created using Flask since the NLP tools
used are supported in Python. This web application will consist of
input and output text boxes and a few additional buttons that let
the user check the validity of their input text. The output text box
will contain the feedback processed by the system.

5 Results and future work

In this study, an error detection tool for the JLPT N5 proficiency
level of Japanese was created. web scraping was utilized to collect

Doubly linked list

Combining tokens
for dictionary
searches

)|

[

]

L
]

]

Applying grammar
rules for particle
usage

L

Evaluating the
sentence structure

\

Detecting
insignificant parts
of the sentence

Dictionary lookups
for spelling errors

J

Figure 5: Steps in the analytical phase

relevant data for JLPT N5 vocabulary and grammar. Additionally, a
.csv corpus of Japanese sentences was used for sentence structure
and particle error evaluation. The web application allows users to
hover over the text and see the parts of speech for each significant
sentence component as well as receive feedback. However, it was
found that the corrected version of the sentence still needs improve-
ment since corpus lookups proved to be unsuccessful for this task.

In the future, a machine learning model will be trained to detect
spelling mistakes and correct input. The tool will also be adapted
to fit higher proficiency levels beyond JLPT N5.

6 Acknowledgement

I would like to express my gratitude for the unwavering guidance
and constructive criticism provided by Dr. Charlie Peck, Dr. David
Barbella, and Dr. Haruka Ogawa.

References

[1] Francis Bond and Timothy Baldwin. 2016. Introduction to Japanese computational
linguistics. Readings in japanese Natural Language Processing. CSLI Publications,
Stanford (2016), 1-28.

[2] Subbu Kannan, Vairaprakash Gurusamy, S Vijayarani, J llamathi, M Nithya, S
Kannan, and V Gurusamy. 2014. Preprocessing techniques for text mining. In-
ternational Journal of Computer Science & Communication Networks 5, 1 (2014),
7-16.

[3] Aji Nugraha Santosa Kasmaji and Ayu Purwarianti. 2015. Employing natural
language processing to analyse grammatical error in a simple Japanese sentence.
In 2015 International Conference on Electrical Engineering and Informatics (ICEEI).
IEEE, 82-86.

[4] Michael Levy. 1997. Computer-assisted language learning: Context and conceptual-
ization. Oxford University Press.

[5] Paul McCann. 2020. fugashi, a Tool for Tokenizing Japanese in Python. arXiv
preprint arXiv:2010.06858 (2020).

[6] Melanie Siegel. 1999. The syntactic processing of particles in Japanese spoken
language. arXiv preprint c¢s/9906003 (1999).

	1 Abstract
	2 Introduction
	3 Background
	3.1 A brief introduction to Japanese sentence structure
	3.2 Japanese NLP

	4 Design
	4.1 Preprocessing Phase
	4.2 Analytical Phase
	4.3 Evaluation and User interface

	5 Results and future work
	6 Acknowledgement
	References

