Detecting typographic, particle and sentence formation errors in JLPT N4 sentences using a rules-based system

Ana Verulidze Earham College Richmond, IN averul19@earham.edu

1) Motivation

NLP provides excellent computer assisted language learning resources, however it still remains somewhat underdeveloped for many languages including Japanese.

In order to improve student-learning experience, this research aims to explore the effectiveness of a rules based system for detecting typographic, particle and sentence formation errors in JLPT N5 sentences.

2) Methodology

Preprocessing Phase
Just like many other NLP tools, preprocessing starts with tokenization, which implies splitting text into meaningful parts of sentences. Tokenized output is transformed into a syntax tree for morphological analysis.

Evaluation Phase
In this phase, we perform morphological analysis to evaluate sentence structure, and completeness, and put together a brief summary of errors detected, which will later be outputted to the user.

3) Data Architecture Diagram

![Diagram of the data architecture]

4) Testing

Accuracy testing is conducted with the help of native speakers, as well as Earlham’s Japanese Language and Linguistics department.

5) Results

Error Detection

(1) Particle error was detected で
(2) Kanji readings were added
(3) Verb position was evaluated
(4) Parts of speech were identified

6) Future Work

Expanding the software to fit higher language proficiency levels.

Reducing kanji-reading errors via machine learning.

Training a machine learning model on a language corpus to detect spelling errors.

Acknowledgement

I would like to express my gratitude for the unwavering guidance and constructive criticism provided by Dr. Charlie Peck and Dr. David Barbella.