Integration of Database Management Systems and Video Game
Engines for Optimal and Sub-Optimal Pathfinding

Katrina Ziebarth
Earlham College
Richmond, Indiana, USA
ksziebal9@earlham.edu

ABSTRACT

This study will examine the feasibility of more closely integrating
databases with video games, with motivations being to take advan-
tage of increased data locality, optimizations already implemented
in database management systems, and preexisting solutions to a
number of problems encountered by modern video games. Using
O’Grady’s “Bringing Database Management Systems and Video
Game Engines Together” as a base, this study will investigate how
his approach can be both extended to the use of Weighted A* for sub-
optimal pathfinding and applied to pathfinding problems derived
from commercial games.

KEYWORDS

video games, database management systems, pathfinding, sub-optimal,
SQL, OpenRA,

1 INTRODUCTION

The use of databases to improve the efficiency of pathfinding in
video games has implications for the potential complexity of video
games. It offers a way to reduce the cost of pathfinding, freeing
resources for the other components of a video game. In addition,
this approach may help to combat issues commonly faced by large
multiplayer games.

Perhaps the most relevant work within this field is O’Grady’s
2021 dissertation. The need for this research can be seen in O’Grady’s
observation that “it is not uncommon for business logic of any kind
(including video games’) to read all data from the database, com-
pute a subset of the data or transformation thereof in an imperative
programming language, and then write it back periodically” As
O’Grady notes, increasing data locality could potentially allow for
much greater efficiency than is possible with that process. O’Grady
also observes that “DBMSs have decades of development and optimi-
sation under their belt” Additionally, O’Grady argues that modern
video games, particularly large multiplayer ones that take place in
persistent worlds, confront issues already addressed by database
management systems, such as “what does it mean when two play-
ers want to manipulate the same part of the game world at the
same time?”, “Can we efficiently find a subset of game elements
that are relevant for a singular calculation, such as the objects that
are currently visible to one player?”, and “When we need to do
these operations over many game objects at once, how do we avoid
swapping parts of the huge game world in and out of the main
memory?” [14].

O’Grady attempts to demonstrate the feasibility of more closely
incorporating relational database management systems by imple-
menting standard components of game engines, including pathfind-
ing, in SQL. His 2021 work includes implementations in SQL of A*,

a booking system for A%, and an iterative pathfinding method that
O’Grady links to what he describes as “the set-based philosophy be-
hind SQL, which excels at specifying operations on many elements
at once” O’Grady evaluates the performance of the first and third of
these implementations using pathfinding which uses pgRouting, an
extension for PostgreSQL, as a baseline. He specifically notes that
his thesis “refrains from introducing a Domain Specific Language
(DSL) to achieve the outlined tasks and uses only plain SQL without
utilizing any imperative extensions” [14]. Gill explains a DSL as
being “a special-purpose language, designed to encapsulate possible
computations in a specific domain” [9]

This work departs from O’Grady’s in its examination of sub-
optimal pathfinding. The reason for this is the lack of necessity of
optimal paths in video games under most circumstances. As Botea
et al. note, “In games, the optimality of solutions is not seen as a
must-have feature. Suboptimal paths that look reasonable to a user
are acceptable” [6]. Similarly, Gao et al. write “finding an optimal
path is usually too costly for real-world applications, an alternate
is to find some acceptable path by sacrificing some quality of the
result. Such ideas are widely used in video games and serving robots”
[8]. The admission of sub-optimal pathfinding algorithms allows
for a wider range of approaches, potentially leading to increased
efficiency in the production of reasonable solutions.

Another choice made by this work is to use various pathfinding
problems derived from commercial games for evaluation of perfor-
mance, where O’Grady used a single unidentified “map of a skir-
mish” [14], likely derived from Red Alert or another of OpenRA’s
official mods [2]. In contrast, this approach offers the potential to
provide further evidence for the feasibility of closer incorporation of
database management systems in commercial game development.

2 RELATED WORK

2.1 Utilization of Databases to Improve
Efficiency

Previous work exists in other fields concerning the utilization of
databases to improve the efficiency of other systems. Bendre et al.
explore how a spreadsheet can be unified with a relational database
while preserving advantages of both, with their DataSpread having
a spreadsheet front-end and a database back-end. In describing
their tool, they write that “DataSpread retains all the advantages of
spreadsheets, including ease of use, ad-hoc analysis and visualiza-
tion capabilities, and a schema-free nature, while also adding the
advantages of traditional relational databases, such as scalability
and the ability to use arbitrary SQL to import, filter, or join external
or internal tables and have the results appear in the spreadsheet”

[5].

Similarly, in his dissertation, O’Grady explores the implementa-
tion in SQL of not only pathfinding, but also of Al and map genera-
tion [14]. O’Grady’s 2019 work also investigates the implementation
of map generation in SQL. It “focuses on real-time strategy (RTS)
games,” and like his 2021 dissertation, it uses the OpenRA engine
[13].

2.2 Pathfinding in Video Games

A vast amount of relevant work exists in the field of pathfinding
in video games. For the sake of brevity, this literature review will
focus on subareas relevant to the objectives of this project.

2.2.1 The Role of A*. Kapi identifies A*, an optimal algorithm, as
the most prominent algorithm in video game pathfinding [10]. Sim-
ilarly, Abd Algfoor notes that A* is among the most well-known
search algorithms in games and robotics and that it “inspired many
modified and improved algorithms” [4]. Rabin and Sturtevant even
write that “All game developers understand that A* is the pathfind-
ing search algorithm of choice” [15]. Thus, it is unsurprising that
O’Grady’s 2021 investigation of pathfinding focuses on A* and
variants based on it [14].

2.2.2 Optimization. Kapi offers an overview of various ways of
optimizing pathfinding in video games, including choice of graph
representation, modification of heuristic functions, and choice of
data structure for implementation [10].

2.2.3 Sub-Optimal Pathfinding. In regards to sub-optimal pathfind-
ing, Botea et al. identify as promising the idea of “combining com-
pressed path databases with hierarchical abstraction” [6].

Returning to the subject of A*, Rabin and Sturtevant, in their list
of ways to optimize A, suggest using an inadmissible heuristic. It is
their observation that “a small amount of overestimating has large
benefits with very little noticeable nonoptimality” [15].

2.24 Heuristics. The three heuristics which O’Grady discusses for
use with A* on grid-based maps are Manhattan distance for Von
Neumann neighborhoods and Euclidean distance and Chebyshev
distance for Moore neighborhoods [14].

Botea et al. note that Manhattan distance and Octile distance
are “simple, fast to compute, and reasonably accurate on many map
topologies” [6].

2.2.5 Environments. O’Grady’s 2019 work uses the OpenRA engine
[13], as does his 2021 dissertation [14]. In explaining the reasons
for his choice of it for his dissertation, O’Grady gives as advantages
that it is open source and under GNU General Public License, has a
development community which can be contacted for inquiries, has
all core components written in an object-oriented programming
language, and has a “clear-cut set of mechanisms” for managing
several actors due to its focus on real time strategy games [14].
Video games utilize a range of techniques for terrain discretiza-
tion, with Nash and Koenig giving examples of games using regular
grids, navigation meshes, and circle-based waypoint graphs [12].
Unfortunately, it was not possible to determine whether O’Grady’s
experiments to measure performance in OpenRA in his 2021 disser-
tation used Von Neumann neighborhoods or Moore neighborhoods.
O’Grady discusses both types of neighborhoods and uses in his
code the boolean pseudo-function neighboring(a, b) [14]. It seems

Ziebarth

probable that his goal in doing so was to make the code more gen-
eral and avoid the need to present separate implementations for
the two types of neighborhoods. However, O’Grady does state that
“we assume maps to generally be decomposable into grids of ar-
bitrary granularity” [14], confirming that these experiments dealt
only with 2D maps.

2.2.6 Existing Benchmarks. A number of pathfinding benchmarks
have been drawn from commercial games which utilize 2D grids
[17]. For 3D voxel grids, a benchmark set from the game Warframe
has been made available, as Brewer and Sturtevant explain. They
note that “in comparison with 2D grid maps, relatively little work
has been done on planning directly in a 3D space representation”
[7]. For this reason, this project will focus on pathfinding on 2D
grids.

2.3 Weighted A*

Rivera et al. note that Weighted A* (WA*) uses an evaluation func-
tion which is similar to A*’s, except for its incorporation of a weight
greater than or equal to one by which the heuristic function is mul-
tiplied. They also refer to weighting the heuristic as a “simple but
powerful technique” [16]. This relates also to Rabin and Sturtevant’s
suggestion that A* be optimized for video games through use of an
inadmissible heuristic. In fact, their approach of multiplying the
heuristic portion of the formula for A*’s evaluation by a weight is
in practice identical to WA* [15]. It is proposed by Rivera et al. that
“A possible reason that explains why Weighted A* finds solutions
more quickly than regular A* is that in multiplying the heuristic by
afactor w > 1, the heuristic becomes more accurate, in a significant
portion of the search space” [16].

2.4 pgRouting

As O’Grady notes, pgRouting is an extension which can be used
with PostgreSQL “to offer path finding capabilities through a variety
of path finding algorithms, including A*, through calls to UDFs”. In
his 2021 thesis, O’Grady uses pgRouting as a baseline for his work
on pathfinding within a database management system (DBMS).
While he did not find it compatible with “the ambition to fully
realize components of video games in SQL in order to not be tied
down to a specific DBMS,” due to its implementation in C++, he
did mention that “it offers a way of keeping the computation of
paths entirely in the world of the DBMS.” [14]. pgRouting is also
open source [1], which will allow for using a modified version of
its implementation of A* to implement Weighted A* as well.

3 DESIGN AND IMPLEMENTATION

In accordance with the code given by O’Grady in his section on
spatial A*, with adjustments for omitted implementation details
[14], A* will be implemented in SQL. A modified version of the
code will then be used in order to implement Weighted A" in SQL.
This decision was made due to the dominance of A" in video game
pathfinding, even in regards to optimization strategies. Similar to
O’Grady’s 2021 work, pgRouting’s A* implementation will also
be used as a baseline, with Weighted A* being implemented in
pgRouting in order to allow for fairer comparison.

Integration of Database Management Systems and Video Game Engines for Optimal and Sub-Optimal Pathfinding

Key: sQL
C++/ pgRouting

4 Conversion to Relational ‘

Representation
"

= %
Algorithms l’ Times
___ g l’ (Conversion to \‘ e
[A" } - N | -oramap File) A >
= Loz, I —
~ T ¥ \ ==
e }‘_ .) we)
- Tl _
::. PostgreSQL }~ —» OpenRA =
- -7 e
_— . a7) y . R
- - &
 war)
s

The performances of A* and Weighted A*, and pgRouting’s imple-
mentations of A* and Weighted A*, will then be compared on one or
more sets of 2D pathfinding problems within OpenRA. These maps
for these problems will be drawn from Sturtevant’s collection of
existing benchmark sets derived from commercial games [17], with
the specific ones chosen being derived from the real-time strategy
games Warcraft Il and StarCraft, due to the focus of OpenRA on
real-time strategy. Since all of the maps within this collection are
octile [17], neighborhoods within them would be Moore neighbor-
hoods, and for this reason, Chebyshev distance, one of the two
heuristics given by O’Grady for use with Moore neighborhoods
[14], will be used as a common heuristic.

A Python program utilizing Psycopg 2 [3] will be used to convert
the maps from a .map format to a relational representation in line
with that described by O’Grady. Since the maps have already be
processed to remove all but the largest connected component [17],
it will not be necessary to check whether each map consists of a
labyrinth in which paths exist between all random pairs of passable
cells, as was true of the map which O’Grady used for evaluation
[14]. Using OpenRA’s map editor, the maps will be be converted to
.oramap files, a format compatible with OpenRA, so that they can
be used within the game engine. To obtain pathfinding problems for
evaluation purposes, the converted maps will be used for skirmishes
in which multiple Als have been set to play each other. The same
will be done for maps derived from Red Alert, which is already
implemented in OpenRA.

In all experiments involving Weighted A*, several weights will
be used, in recognition of Rabin and Sturtevant’s observation that
“The correct weight for your game or parts of your game must be
discovered experimentally” [15], which implies that each set of
pathfinding problems will require a different weight to optimize
performance.

O’Grady used one action per 150 milliseconds as an loose upper
bound for "agreeable waiting time" for pathfinding, citing Lewis
et al’s Starcraft study as a source [14]. Lewis et al. assert that pro-
fessional Starcraft players in South Korea “can execute over 400
actions per minute (APM) in the game. By contrast, a highly accom-
plished amateur in the United States would likely top out in the mid
200s.” Lewis’ study, which utilizes replay files from games played in
tournaments outside South Korea, uses a bound of 250 actions per
minute [11]. This suggests that outside of high-performance con-
texts, 250 APM would likely yield a more reasonable upper bound

than the 400 APM O’Grady used. For that reason, this study will use

metrics derived from both in evaluating algorithm performance.
All four algorithm implementations will be compared regarding

time needed to calculate paths relative to path length as measured
in nodes, similar to the comparison made by O’Grady between
the pgRouting implementation of A* and his implementation of
A* in SQL. In particular, emphasis will be placed on under what
circumstances they remain within one or both of the upper bounds
for waiting time. In recognition of O’Grady’s observation that “In
real-world scenarios, especially for real time strategy games, short
path searches are the most time-critical ones, as they are part of
the micromanagement of units that occurs during heated battles”
[14], heavier weight will be given to the results on shorter paths.
The relationship between optimality of path and path length
in nodes will also be examined for Weighted A*, since short path
searches’ place as “part of the micromanagement of units that
occurs during heated battles” [14] suggests they may be not only
time-critical, but important to achieve near-optimality for.

ACKNOWLEDGMENTS

I would like to thank David Barbella and Sofia Lemons for their as-
sistance in planning this project. I would also like to thank Charlie
Peck and Porter Libby for their assistance with this project. Addi-
tionally, I am grateful to Daniel O’Grady and Nathan R. Sturtevant
for responding to my inquiries regarding their work.

REFERENCES

[1] 2020. pgRouting Project. Retrieved December 9, 2022 from https://pgrouting.org/#

[2] 2023. OpenRA. Retrieved March 17, 2023 from https://www.openra.net/

[3] 2023. Psycopg 2. Retrieved April 16, 2023 from https://pypi.org/project/psycopg2/

[4] Zeyad Abd Algfoor, Mohd Shahrizal Sunar, and Hoshang Kolivand. 2015. A
comprehensive study on pathfinding techniques for robotics and video games.
International Journal of Computer Games Technology 2015 (2015), 1-11.

[5] Mangesh Bendre, Bofan Sun, Ding Zhang, Xinyan Zhou, Kevin ChenChuan
Chang, and Aditya Parameswaran. 2015. Dataspread: Unifying databases and
spreadsheets. In Proceedings of the VLDB Endowment International Conference on
Very Large Data Bases, Vol. 8. NIH Public Access, 1-11.

[6] Adi Botea, Bruno Bouzy, Michael Buro, Christian Bauckhage, and Dana Nau.
2013. Pathfinding in games. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
21-31.

[7] Daniel Brewer and Nathan R. Sturtevant. 2018. Benchmarks for Pathfinding in
3D Voxel Space. Symposium on Combinatorial Search (SoCS) (2018).

[8] Zhipeng Gao, Junmeng Huang, and Chen Zhao. 2021. A double-phase search
algorithm for sub-optimal path finding. In 2021 the 5th International Conference
on Innovation in Artificial Intelligence. 190-195.

[9] Andy Gill. 2014. Domain-specific languages and code synthesis using Haskell.
Commun. ACM 57, 6 (2014), 42-49.

[10] Azyan Yusra Kapi, Mohd Shahrizal Sunar, and Muhamad Najib Zamri. 2020. A
review on informed search algorithms for video games pathfinding. International
Journal 9, 3 (2020).

[11] Joshua Lewis, Patrick Trinh, and David Kirsh. 2011. A corpus analysis of strategy
video game play in starcraft: Brood war. In Proceedings of the Annual Meeting of
the Cognitive Science Society, Vol. 33.

[12] Alex Nash and Sven Koenig. 2013. Any-angle path planning. AI Magazine 34, 4
(2013), 85-107.

[13] Daniel O’Grady. 2019. Database-Supported Video Game Engines: Data-Driven
Map Generation. BTW 2019 (2019), 511-514.

[14] Daniel O’Grady. 2021. Bringing Database Management Systems and Video Game
Engines Together. Ph.D. Dissertation. Eberhard Karls Universitit Tiibingen.

[15] Steve Rabin and Nathan R Sturtevant. 2013. Pathfinding architecture optimiza-
tions. Game Al Pro: Collected Wisdom of Game Al Professionals 1 (2013), 241-252.

[16] Nicolés Rivera, Jorge A Baier, and Carlos Hernandez. 2013. Weighted real-time
heuristic search. In Proceedings of the 2013 international conference on Autonomous
agents and multi-agent systems. 579-586.

[17] NathanR. Sturtevant. 2012. Benchmarks for Grid-Based Pathfinding. Transactions
on Computational Intelligence and Al in Games 4, 2 (2012), 144 — 148. http:
//web.cs.du.edu/~sturtevant/papers/benchmarks.pdf

https://pgrouting.org/#
https://www.openra.net/
https://pypi.org/project/psycopg2/
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf
http://web.cs.du.edu/~sturtevant/papers/benchmarks.pdf

	Abstract
	1 Introduction
	2 Related Work
	2.1 Utilization of Databases to Improve Efficiency
	2.2 Pathfinding in Video Games
	2.3 Weighted A*
	2.4 pgRouting

	3 Design and Implementation
	References

