
Generic Summary Generation to Produce a Highlighted Version
of Documents

Juan E. Junco
Earlham College
Richmond, Indiana

Jejunco20@earlham.edu

ABSTRACT
Identifying the most relevant text information from online texts has
become a standard task now that data is easily accessible. Conse-
quently, summary generation has gained significant importance by
reducing the amount of text a person has to read to get meaningful
information from the text. The underlying field for this process
Natural Language Processing (NLP). NLP enables algorithms to
understand and rewrite a text based on the original information. In
this proposal, I will explore how a Convolutional Neural Network
(CNN) can create a new approach for visualizing the critical aspects
of a text. Instead of generating a shorter text, the output will be a
version with the essential elements highlighted.

KEYWORDS
SummaryGeneration, Natural Language Processing (NLP),Machine
Learning (ML), Convolutional Neural Networks (CNN), Artificial
Intelligence (AI).

1 INTRODUCTION
The definition of summary generation I will use in this paper re-
sembles the definition stated by H. Lie. he refers to summary as
a condensation of the main ideas in an article and defines it as a
text reduced to its main points [8]. The massive number of digital
texts on a single topic increases the difficulty of identifying relevant
information. "Summarization is important in some context to help
people understand facts or to gain knowledge." [16]. Summary gen-
eration utilizes ML, statistical analysis, and NLP strategies [11]. In
this paper, I will explore how using tools for summary generation
along with a CNN allow the creation of new output. The work was
inspired by Yadav et al. (2018) [7] and is guided by the research
question, Is a CNN effective to generate a highlighted document
version for users that identifies the most relevant parts of the text
that convey the document’s meaning?

The idea that key portions of a document can be highlighted in-
stead of summarizing has been present for quite some time. Among
the motivations to do so, researchers argue that, highlights appear
within their context (unlike a summary), and the impact of ‘bad”
highlights is of much lower consequence than ‘bad” summaries
[18]. The importance of the proposed software is that it highlights
the most relevant sentences in a text. The software would allow the
user to identify the fundamental ideas of a text using the author’s
words. Moreover, this approach avoids the process of sentence gen-
eration or reconstruction to generate the summary that is used
in some of the work surveyed for this review. This approach uses
the same methods of summary generation though a CNN of Ya-
dav et al. and combines it with Spala et al. methods to highlight
specific parts of the text. Currently, most methods for summary

generation extract relevant sentences or words and categorize them
based on statistical analysis, and finally reach the point of summary
reconstruction. In addition, every relevant sentence is glued to-
gether using punctuation marks and connectors to build a coherent
summary.

When presented with a summary, the user is faced with a choice:
either rely on the summary or take the long approach and skim
through the full text. As a solution, this study aims to address that
limitation by successfully identifying the general ideas of a text
and using them to generate a highlighted version of the text that
spotlights the key points. The user can now identify the same in-
formation as in the generated summary but relying on the veracity
of the words written by the author. The models will be evaluated
using the accuracy Recall-Oriented Understudy for Gisting Eval-
uation (ROUGE) scores as a measurement for relevance of text as
suggested by the work by Baldwin et. al [1].

The remainder of this paper is organized into six sections. Section
2 provides a brief overview of the related work. Section 3 describes
the design of the project. Section 4 outlines the evaluation methods.
Section 5 shows the results and Section 6 contains the conclusion.

2 BACKGROUND AND RELATEDWORKS
This section introduces existing research on two widely-used meth-
ods for text summarization and similar work that also highlights
significant aspects of a text. The summarization methods explored
are the statistical approach and the convolutional neural networks
(CNN). The work surveyed for this proposal generates a new sum-
marized piece of text using one of those two methods, but very few
generate a highlighted version. The generation of that document
will be the objective in my senior capstone project.

There are different types of summaries. According to Berger
and Mittal [2], summarization is a field divided into two different
ways of generating the desired extraction of information: Generic
summaries and query-relevant summaries. This project will focus
on the former type of summary. Generic summaries allow under-
standing of information without considering what specific pieces
the reader might be hoping to extract from the article. In other
words, it is much like ‘the abstract in a paper, designed to distill
salient points" [2]. The outcome of such analysis is a new text that
semantically joins relevant aspects into a new text. This kind of
summary allows users to understand the main points of the text
independent of any query.

In this paper, I will use generic summaries, but there is a direct
contrast that generates a summary based on the user’s query. “User
Focused Abstracts, i.e., abstracts relating information in the docu-
ment to a particular user interest" [10]. The summary reflects the
importance of individual pieces of the text that match the text query



Conference’17, July 2017, Washington, DC, USA Junco

made by the user. Basically, it spotlights the most important aspects
of the text based on what the user is looking for.

This section will briefly explore related work that attempted to
highlight the most important aspects of a text. Then, I explore the
utilization of a NN and how efficient it is to generate summaries
based on sentences from the text in a categorized way. Finally,
statistical analysis has a broad range of operations to achieve a
hierarchy of either words or sentences in the text. When the latter
approach is implemented correctly, it has a similar and, in some
cases, higher accuracy than using a NN.

2.1 Highlighting Text
Spala et al. implemented a survey study that presented two different
sets of human candidates with the same text version. One group
was shown an unannotated text, and annotators were asked ’to
highlight sentences that would make document comprehension eas-
ier and faster for another naive reader"[17]. The second group was
presented with two already highlighted document versions. Partici-
pants had to vote on every highlight displayed on the document.
Once they reached the document’s end, they had to rate the two
versions of the highlights. Spala et al. used the interaction of human
users to come up with a correct highlighted version of documents.
Spala et al. is an excellent example of how a highlighted version of
a document is possible but has yet to be fully automatized.

In a second approach, Turney tested different benefits of ex-
tracting keyphrases from documents, among them the benefit of
having a highlighted version of the text [19] . P. Turney treated a
document as a set of phrases, which a learning algorithm learns to
classify as positive or negative examples of key phrases. Turney’s
first set of experiments applied the C4.5 decision tree induction
algorithm and the second set of experiments applied a GenEx al-
gorithm specifically for this task. Highlighting was included by
a direct comparison between the GenEx algorithm and Verity’s
Search 97 text retrieval system [5]. Verity’s Search 97 produces a
summary with highlighted key phrases embedded in the sentences.
Turney utilized a search-based optimization technique based on
Genetics and Natural Selection principles. This lies outside of all the
other summarization techniques surveyed in this proposal; the aim
of P. Turney was not specifically to produce readable documents
for the user but to test the importance of key phrases.

2.2 Statistical Approaches
Statistical approaches summarize a document using statistical fea-
tures of the sentence, such as title, the location and, term frequency,
assigning weights to keywords (keywords are words of the title in
the text) and then calculating the score of the sentence. Finally, the
software selects the highest-scoring words and adds them to the
summary [3].

Baldwin and Morton [1] implemented an information retrieval
algorithm based on the probabilistic analysis. The main objective
was to find all the possible sentences in the text until the query was
’covered," meaning that a sentence contains information related to
the query. The method used two features, first finding the proba-
bility for a word in the document to match the word on the query.
Therefore, words were assigned a number based on how similar

they were to words from the query. The words with the highest
calculations were further analyzed with NLP techniques, including:

• Entity Recognition
• Tokenization
• Sentence Detection
• Part of Speech Tagging
• Morphological Analysis
• Parsing
• Argument Detection

Baldwin and Morton categorized the sentences using co-reference
chains, pieces of text with any common sub-sequence of words
from the query. After categorizing sentences based on resemblance
with co-reference chains, those with the highest probability were
organized in ascending order and added to the final summary. The
following query showcases the possible sentence selected from a
text using their algorithm:

Query: What evidence is there of paramilitary activity in the
U.S.?

Summary: Last month, the extremists used rocket-propelled
grenades for the first time in three attacks on police and paramili-
tary units

Munot and Govilkar performed a comparative study using other
statistical approaches [11]. In the study they show how ‘abstractive
text summarization method generates a sentence from a semantic
representation and then use natural language generation techniques
to create a summary that is closer to what a human might generate.
Such a summary might contain words not explicitly present in the
original." Their software identifies items from the original text and
then produces a new document using fewer words.

Software that uses NLP techniques has a very effective rate of
summary (the appropriateness of the sentences it produces as out-
put). In both articles mentioned above, the testing showed more
than 90 percent accuracy with human generated summaries. Each
sentence in the text is compared with the reference summary and
measures the overlapping percentage of words between them. In
terms of the implementation of such software, both articles classi-
fied sentences and used mathematical analysis to break down the
measured categories.

2.3 Neural Networks
’An artificial neural network consists of an input layer of neurons (or
nodes, units), hidden layers of neurons, and a final layer of output
neurons" [20]. In summary generation, the input is a pre-processed
version of the text that can be given to a neural network. An NN
is a powerful pattern classification tool. Pattern classification is
important to summary generation, as the association of related
words allows the reduction in length of a text [13].

Kaiaikhah et al. [7] by creating different features and then ma-
nipulating the hidden layers to output a summarized version of
the text. The point of uniqueness of this research lies in turning
sentences into vectors. Each sentence was evaluated using seven
different criteria. Each criterion became the input of the NN, mean-
ing that the information had already normalized to some extent.
Kaiaikhah et al. first used already categorized summaries to train
the NN. The hidden layer calculations allowed the NN to decide
which feature had the most impact on the summarization process



Generic Summary Generation to Produce a Highlighted Version of Documents Conference’17, July 2017, Washington, DC, USA

by pruning. Every feature that contains the highest resemblance to
the query is gathered together for the last stage of the process, the
document reconstruction.

A second relevant example of using a NN to produce a summary
was proposed by Sinha et al. [15] implemented a successful Neural
Network (NN) model that generated very accurate summaries of
online texts with an output accuracy of 95 percent compared to
human-written summaries. The main point of their approach is to
optimize news articles. News articles encapsulate the topic in the
title, but usually the story’s context requires more than just the
title to be understood. The NN requires a numerical representation
of the input to perform calculations. Sinha et al. used a vector
representation of words. They fed the sentences as input to the
word2vec [4] model that provides vector representation for words
of the English language. Once the calculations are done, there is a
final activation function in the output layer. This allows the NN to
gather sentences with the highest measure of belief to be included
in the summary. In other words, the highest numbers are added to
the summary. Finally, after extracting the relevant points, Sinha et
al. used ROUGE scores as the evaluation method to test for accuracy.
This technique compares a human-generated text summary with
the output summary of the NN using n-grams. The summaries
had an average accuracy score of 95 percent compared to human-
performed summaries. A second test is related to the length of the
summary. It should contain fewer sentences than the original text.
The summary length in terms of the number of sentences is fixed
and known before summary generation.

Figure 1: Neural Network

3 DESIGN AND IMPLEMENTATION
This project focuses on generating a highlighted version of a docu-
ment based on the most relevant ideas contained. The main point
would be the generation of a new output that could potentially be

useful for the average user. Moreover, this study focuses on extrac-
tion of sentences from the text instead of any further analysis that
could match the words in a query with the expected output. In this
section, I will discuss the data set used in my research, the model to
implement, and finally, the evaluation techniques for the capstone
project.

3.1 Research Data
TREC (Text Research Collection Volume) [6] has been used across
several papers that deal with text summaries. TREC is an effort
to advance the state of the art in effective document detection
(information retrieval) and data extraction from large, real-world
data collections. The content is divided between five different disks.
TREC is a test collection used for information retrieval research.
It includes material from various sources such as the Wall Street
Journal, AP Newswire, Federal Register, San Jose Mercury News, U.S.
Patents, and computer-related articles. The collection is divided into
several disks based on the source and year of the material. Neto et
al. used the TREC Collection in a NN approach [12]. In their paper
they performed two series of experiments, first implementing a
Neural Network and second implementing statistical grouping of
words. For both cases they used the same source of data from the
TREC project, testing their approaches using material from the
Wall Street Journal [9]. Later in the paper they go into detail about
other possible sources of information they plan to use to further
test their proposed approaches, one of them being magazines about
computers.

This research used the disks four and five as training data. The
collections contain documents that include material from the Finan-
cial Times Limited, the Congressional Record of the 103rd Congress,
the Federal Register, and the Los Angeles Times. The first set of
training documents came from the Los Angeles Times.

3.2 Pre-Processing
Before implementing any model to tokenize the text, it is essential
to preprocess a document before using it in any NLP task because
it helps to transform the raw, unstructured text into a structured
format that NLP algorithms can quickly analyze. Preprocessing
involves various steps such as tokenization and stop word removal,
which helps reduce the data’s size and eliminate noise and irrele-
vant information. These steps improve the data quality and ensure
that the NLP algorithms can focus on the relevant information,
enhancing their accuracy and efficiency.

In this case, the documents contained in each paperwere crowded
with different syntax notations as HTML code or side notes that
would decrease the learning process of any NLP process. I started
by using a simple Python script and removing any lines that began
with "<. " This would remove every HTML reference and rewrite
a new document with only essential information. Furthermore, I
used the Gensim library to tackle the rest of the data preprocess-
ing. Gensim is an open-source Python library for natural language
processing (NLP) tasks. It provides a set of algorithms and tools for
tasks such as topic modeling, similarity detection, and text sum-
marization. Gensim is designed to handle large-scale, sparse, and
unstructured text data and provides efficient algorithms for model-
ing and processing text data. Gensim is widely used in academic



Conference’17, July 2017, Washington, DC, USA Junco

Figure 2: Software Architecture

and industrial research for various NLP tasks such as sentiment
analysis, document clustering, and information retrieval [14].

The function usedwas 𝑠𝑖𝑚𝑝𝑙𝑒𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 () it takes a document (a
string of text) as input and returns a list of tokens, where each token
is a processed word from the original text. The resulting tokens
can then be used for further NLP tasks such as topic modeling,
sentiment analysis, and more. The analysis is done by the cosine
similarity equation:

cos𝜃 =
𝑥 · 𝑦

∥𝑥 ∥ ∥𝑦∥

3.3 Summarization Model
This section will detail a step-by-step guide to produce a reliable
model that outputs an extractive summary. Extractive summariza-
tion is essential, selecting important or representative sentences
from a text and assembling them into a shorter form. It involves
identifying the most relevant information and preserving the mean-
ing and tone of the original text.

3.3.1 Word2vec. Word2vec is a technique for creating word embed-
dings and vector representations of words in a high-dimensional
space. The method uses a neural network to generate these em-
beddings by training on a large corpus of text data to predict the
likelihood of a given word occurring in the context of other words
in the same sentence. The resulting word embeddings help capture
the semantic relationships between words in the text.

After the preprocessing stage, the documents are ready to gen-
erate the first model using the gensim library. At the start of the
training phase, I created two matrices – an Embedding matrix and
a Context matrix. These two matrices have an embedding for each
word in the vocabulary. Subsequently, the similarity is created by
taking the dot product of the input embedding with each of the
context embeddings. Then, the Sigmoid function fits those values
between 0 and 1, or in other words, generates the probability value:

𝑓 (𝑥) = 1
1 + 𝑒−𝑥

Finally, we create the function to train a model with the prede-
fined epochs. The embeddings continue to be improved while we
cycle through our entire dataset for some epochs. The output is
a model where all the words are tokenized and ready for further
analysis.

3.3.2 Features model. This process will replicate the methods used
by Kaiaikhah et al.[7] by implementing different features and ma-
nipulating the hidden layers to output hierarchized sentences of the
text in question. There will be an implementation of four features
that encapsulate different criteria in the text.

Feature Description
Feature 1 Tittle words in text
Feature 2 Name entities
Feature 3 Number of Cue Words
Feature 4 topic sentences



Generic Summary Generation to Produce a Highlighted Version of Documents Conference’17, July 2017, Washington, DC, USA

3.3.3 Feature 1. is designed to extract the words that match the
tittle. First, it imports necessary libraries such as os, glob, gensim,
keras, and numpy. Then define the 𝑔𝑒𝑡𝑡𝑖𝑡𝑙𝑒𝑠 function that reads all
files in a specified directory, extracts the headlines, and returns a
list of preprocessed and pruned titles. The 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑓 𝑖𝑙𝑒𝑐𝑜𝑛𝑡𝑒𝑛𝑡
function is used to clean up the file content by removing headlines
and returning the processed content.

The𝑚𝑎𝑡𝑐ℎ𝑡𝑖𝑡𝑙𝑒𝑠 function takes a directory path and a list of titles
as input, tokenizes the titles, and iterates through the files to create
a dictionary (𝑓 𝑖𝑙𝑒𝑡𝑒𝑛𝑠𝑜𝑟 ) with keys as "title0", "title1", and so on.
For each line in the preprocessed content, the function checks if
any word from the current title appears in the line. If yes, it creates
a feature array where each element represents the presence of a
word from the tokenizer’s word index in the line, and appends this
array to the corresponding key in 𝑓 𝑖𝑙𝑒𝑡𝑒𝑛𝑠𝑜𝑟 . The function then
increments the title index if any word from the next title appears
in the line.

Finally, the code creates a 𝑡𝑖𝑡𝑙𝑒𝑤𝑜𝑟𝑑 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 array by concate-
nating feature arrays for all articles. This array can be used as an
input for a neural network to analyze or classify the articles based
on the presence of words from the headlines in their content.

3.3.4 Feature 2. is designed to extract named entities and sen-
tences containing named entities from a collection of text files.
It begins by importing the necessary libraries, such as glob, os,
re, spacy, numpy, defaultdict, 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑠𝑡𝑟𝑖𝑛𝑔, and Dictionary.
The spacy library is loaded with the 𝑒𝑛𝑐𝑜𝑟𝑒𝑤𝑒𝑏𝑠𝑚𝑚𝑜𝑑𝑒𝑙 to process
text. To accomplish this, I defined three functions: 𝑟𝑒𝑚𝑜𝑣𝑒ℎ𝑡𝑚𝑙𝑡𝑎𝑔𝑠 ,
which takes a text input and removes any HTML tags using reg-
ular expressions. 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 , this function preprocesses text us-
ing the 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑠𝑡𝑟𝑖𝑛𝑔 function from the gensim library. And
𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑓 𝑜 𝑓 𝑟𝑜𝑚𝑓 𝑖𝑙𝑒 that takes a file path, reads the file line by
line, and extracts named entities and sentences containing named
entities. It uses the spacy library to identify named entities and
excludes entities labeled as ’CARDINAL’. It then preprocesses the
sentences, creates a dictionary of unique words, and converts the
preprocessed sentences to a bag-of-words representation. Finally,
it converts the bag-of-words sentences to a list of word frequen-
cies and stores the results in a dictionary with the document ID
as the key. The main function, 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑓 𝑜 𝑓 𝑟𝑜𝑚𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦, takes a
directory path as input and iterates through all files in the directory
with the specified pattern. It calls the 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑛𝑓 𝑜 𝑓 𝑟𝑜𝑚𝑓 𝑖𝑙𝑒 func-
tion for each file and appends the resulting word frequency lists to
a master list (results). After processing all the files, the list of lists is
converted to a numpy array with dtype object. This numpy array,
named 𝑛𝑎𝑚𝑒𝑑𝑒𝑛𝑡𝑖𝑡𝑦𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 , can be used for further analysis or
as input for machine learning models.

3.3.5 Feature 3. Themain objective is to process a collection of text
files, identify the presence of specific cue words in each sentence,
and tokenize the sentences. First, the code imports necessary li-
braries such as os, glob, gensim, re, Tokenizer, and 𝑝𝑎𝑑𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 .
A list of cue words is defined, which consists of common transition
words and phrases. The path to the data directory is set using the
os.path.expanduser function. A Tokenizer object is instantiated
for later use.

Two functions are defined in the code:

𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑓 𝑖𝑙𝑒𝑐𝑜𝑛𝑡𝑒𝑛𝑡 : This function processes the file content,
extracting headlines and appending a unique article identifier before
each headline. 𝑚𝑎𝑡𝑐ℎ𝑐𝑢𝑒𝑤𝑜𝑟𝑑𝑠: This function takes the path to
the files and the list of cue words as input. For each file in the
specified path, the function tokenizes sentences and checks for
the presence of cue words. It then creates a dictionary, 𝑓 𝑖𝑙𝑒𝑡𝑒𝑛𝑠𝑜𝑟 ,
with keys representing individual articles and values containing
tokenized sentences and their corresponding cue word features. The
sentences are padded using the 𝑝𝑎𝑑𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 function to ensure all
sentences have the same length. The code concludes by returning
the 𝑓 𝑖𝑙𝑒𝑡𝑒𝑛𝑠𝑜𝑟 dictionary and the maximum sentence length.

3.3.6 Feature 4. The goal is to extract topic sentences from a collec-
tion of text files and tokenize them. First, the required libraries are
imported, including PlaintextParser, Tokenizer, LexRankSum-
marizer, and 𝑠𝑖𝑚𝑝𝑙𝑒𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 . The path to the data directory is
set using the os.path.expanduser function.

Two functions are defined in the code:
𝑔𝑒𝑡𝑡𝑜𝑝𝑖𝑐𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠: This function takes the path to the files as

input, iterates through each file, and extracts articles from the con-
tent. It then uses the LexRank algorithm from the sumy library to
extract topic sentences from each paragraph of every article. The
extracted topic sentences are stored in a dictionary with keys rep-
resenting the article number and values containing the list of topic
sentences. 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑡𝑜𝑝𝑖𝑐𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠: This function takes the topic
sentences as input and tokenizes them using the gensim library’s
𝑠𝑖𝑚𝑝𝑙𝑒𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 function. The tokenized sentences are stored in
a dictionary with keys representing the article number and val-
ues containing the list of tokenized topic sentences. After defining
these functions, the code calls 𝑔𝑒𝑡𝑡𝑜𝑝𝑖𝑐𝑥𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 to extract topic
sentences from the articles and stores them in the 𝑡𝑜𝑝𝑖𝑐𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
dictionary. Next, the 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑡𝑜𝑝𝑖𝑐𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 function is called to
tokenize the extracted topic sentences, which are then stored in
the 𝑡𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑑𝑡𝑜𝑝𝑖𝑐𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 dictionary. Finally, the tokenized topic
sentences are converted to a list of lists named 𝑡𝑜𝑝𝑖𝑐𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑙𝑖𝑠𝑡

for further analysis or use as input for machine learning models.

3.3.7 Highlighted Version. Finally, I used the selected sentences
and words from the summary to highlight the Python document.
For this, I implemented the termcolor library, a Python library for
formatting text output in a terminal or console window. The first
step was to open the input document and read its content into a
string variable. Next, I added the summarized sentences to highlight
in the document. Then, I processed the text to find the locations
of these words in the document. Once the positions of the words
had been identified, I used the termcolor library or any other text
formatting library in Python to highlight the words in the document.
Finally, I wrote the highlighted text into a new file, to overwrite
the original file with the highlighted version.

4 EVALUATION
A significant portion of the NN-based summaries’ testing is asso-
ciated with the accuracy of a generated summary, which is often
evaluated by comparing it to already annotated versions of docu-
ments and by extracting relevant items. For instance, Kaiaikhah
[15] employed 25 different news articles, which were independently
summarized by a human reader and all three modified networks.



Conference’17, July 2017, Washington, DC, USA Junco

The average accuracy of the discretized real-values into intervals
neural network was 96 percent.

To examine the evaluation process more thoroughly, we incor-
porated OpenAI’s state-of-the-art language model as an additional
input for comparing the rest of our neural network. We used the
widely accepted ROUGE scores to measure the performance of
our model, thus avoiding human involvement. ROUGE stands for
Recall-Oriented Understudy for Gisting Evaluation, and it includes
measures that automatically determine the quality of a summary by
comparing it to other (ideal) summaries created by humans. These
measures count the number of overlapping units, such as n-grams,
word sequences, and word pairs, between the computer-generated
summary being evaluated and the ideal summaries crafted by hu-
mans [9]. By leveraging OpenAI’s model and ROUGE scores based
on n-grams, we conducted a comprehensive assessment of our
neural network’s performance in generating accurate summaries.

Table 1: NN ROUGE Scores

Precision Recall F1 Score

ROUGE-1 0.60 0.53 0.58
ROUGE-2 0.25 0.29 0.27
ROUGE-L 0.83 0.72 0.79

The table presents the ROUGE scores for a neural network-
generated summary compared to OpenAI-generated summaries.
The scores are broken down into Precision, Recall, and F1 Score
for each of the three ROUGE metrics (ROUGE-1, ROUGE-2, and
ROUGE-L).

(1) ROUGE-1: This score measures the overlap of individual
words (unigrams) between the summaries. The precision is
0.60, meaning that 60 percent of the words in the neural
network-generated summary also appear in the OpenAI-
generated summaries. The recall is 0.53, indicating that 53
percent of the words in the OpenAI-generated summaries
are present in the neural network-generated summary. The
F1 Score, which balances both precision and recall, is 0.58,
suggesting a moderate level of word overlap between the
summaries.

(2) ROUGE-2: This score measures the overlap of bigrams (two
consecutive words) between the summaries. The precision
is 0.25, and the recall is 0.29, both lower than the ROUGE-
1 scores. This indicates that the neural network-generated
summary has a lower level of coherence and structural simi-
larity to the OpenAI-generated summaries. The F1 Score for
ROUGE-2 is 0.27, confirming the lower overlap in terms of
bigrams.

(3) ROUGE-L: This score, based on the Longest Common Sub-
sequence (LCS), measures the overall similarity between
the summaries while allowing for flexibility in word order.
The precision is 0.83, and the recall is 0.72, both relatively
high values, suggesting that the neural network-generated
summary and the OpenAI-generated summaries share a sub-
stantial amount of information, despite potential differences
in phrasing or word order. The F1 score for ROUGE-L is 0.79,
indicating a good level of similarity between the summaries.

In summary, the ROUGE scores suggest that the neural network-
generated summary shares amoderate level of word overlap (ROUGE-
1) and a good level of overall similarity (ROUGE-L) with the OpenAI-
generated summaries. However, the lower ROUGE-2 scores indicate
that there may be differences in coherence and structure between
the summaries, which makes sense based on the fact that the Neural
Network is extracting textual information from the text, without
considering cohesion.

5 RESULTS
In this section we will explore the results for each of the individual
features and the result overall of the text.

Figure 3: Title Words

Figure 4: Topic Sentence



Generic Summary Generation to Produce a Highlighted Version of Documents Conference’17, July 2017, Washington, DC, USA

Figure 5: Named Entities

Figure 6: Cue Words

6 CONCLUSION
This study demonstrates the potential of utilizing a neural network-
based approach to generate summaries from text documents. By
implementing and combining various features, including title words,
named entities, cue words, and topic sentences, the model is able to
extract significant information from the source text and generate a
summary. The evaluation of the neural network’s performance us-
ing ROUGE scores shows promising results, with moderate to good
similarity levels compared to summaries generated by OpenAI’s
state-of-the-art language model.

However, there is still room for improvement in the coherence
and structural similarity between the neural network-generated
summaries and the ideal human-generated summaries. This can
potentially be addressed by incorporating more sophisticated tech-
niques, such as attention mechanisms or transformer models, which
have shown excellent performance in natural language under-
standing and generation tasks. Additionally, incorporating more
advanced features or exploring ways to improve the interaction
between features could also lead to better summary quality.

In conclusion, the neural network-based summarization approach
presented in this study is a promising starting point for generating
accurate summaries. With further refinement and the incorporation
of advanced techniques, the performance of the model can be im-
proved to generate even more coherent and informative summaries.

7 ACKNOWLEDGEMENTS
I would like to thank David Barbella and Sofia Lemons for providing
me detailed feedback to improve this topic proposal paper.

REFERENCES
[1] Breck Baldwin and Thomas S. Morton. 1998. Dynamic coreference-based sum-

marization. In Proceedings of the third conference on empirical methods for natural
language processing. 1–6.

[2] Adam Berger and Vibhu O Mittal. 2000. Query-relevant summarization using
FAQs. In Proceedings of the 38th annual meeting of the association for computational
linguistics. 294–301.

[3] Saeedeh Gholamrezazadeh, Mohsen Amini Salehi, and Bahareh Gholamzadeh.
2009. A comprehensive survey on text summarization systems. In 2009 2nd
International Conference on Computer Science and its Applications. IEEE, 1–6.

[4] Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et
al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
(2014).

[5] Ed Gordon. 1996. Verity agent technology: Automatic filtering, matching and
dissemination of information. Vine (1996).

[6] Donna Harman and Mark Liberman. 2012. Tipster complete. https://catalog.ldc.
upenn.edu/LDC93T3A

[7] Khosrow Kaikhah. 2004. Automatic text summarization with neural networks. In
2004 2nd International IEEE Conference on’Intelligent Systems’. Proceedings (IEEE
Cat. No. 04EX791), Vol. 1. IEEE, 40–44.

[8] Danny H Lie. 1998. Sumatra: a system for automatic summary generation. Carp
Technologies (1998).

[9] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74–81. https://aclanthology.org/W04-1013

[10] Inderjeet Mani. 2001. Automatic summarization. Vol. 3. John Benjamins Publish-
ing.

[11] Nikita Munot and Sharvari S Govilkar. 2014. Comparative study of text sum-
marization methods. International Journal of Computer Applications 102, 12
(2014).

[12] Joel Larocca Neto, Alex A Freitas, and Celso AA Kaestner. 2002. Automatic text
summarization using a machine learning approach. In Brazilian symposium on
artificial intelligence. Springer, 205–215.

[13] Phil Picton. 1994. What is a neural network? In Introduction to Neural Networks.
Springer, 1–12.

[14] Radim Rehurek and Petr Sojka. 2011. Gensim–python framework for vector
space modelling. NLP Centre, Faculty of Informatics, Masaryk University, Brno,
Czech Republic 3, 2 (2011).

[15] Aakash Sinha, Abhishek Yadav, and Akshay Gahlot. 2018. Extractive text sum-
marization using neural networks. arXiv preprint arXiv:1802.10137 (2018).

[16] Yong SP, Ahmad IZ Abidin, and YY Chen. 2006. A neural-based text summariza-
tion system. WIT Transactions on Information and Communication Technologies
37 (2006).

[17] Sasha Spala, Franck Dernoncourt, Walter Chang, and Carl Dockhorn. 2018. A
Comparison Study of Human Evaluated Automated Highlighting Systems. In
Proceedings of the 32nd Pacific Asia Conference on Language, Information and
Computation.

[18] Sasha Spala, Franck Dernoncourt, Walter Chang, and Carl Dockhorn. 2018. A
Web-based Framework for Collecting and Assessing Highlighted Sentences in a
Document. In Proceedings of the 27th International Conference on Computational
Linguistics: System Demonstrations. Association for Computational Linguistics,
Santa Fe, New Mexico, 78–81. https://aclanthology.org/C18-2017

[19] Peter D. Turney. 2002. Learning to Extract Keyphrases from Text. https:
//doi.org/10.48550/ARXIV.CS/0212013

[20] Sun-Chong Wang. 2003. Artificial neural network. In Interdisciplinary computing
in java programming. Springer, 81–100.

https://catalog.ldc.upenn.edu/LDC93T3A
https://catalog.ldc.upenn.edu/LDC93T3A
https://aclanthology.org/W04-1013
https://aclanthology.org/C18-2017
https://doi.org/10.48550/ARXIV.CS/0212013
https://doi.org/10.48550/ARXIV.CS/0212013

	1 Introduction
	2 Background and Related Works
	2.1 Highlighting Text
	2.2 Statistical Approaches
	2.3 Neural Networks

	3 Design and implementation
	3.1 Research Data
	3.2 Pre-Processing
	3.3 Summarization Model

	4 Evaluation
	5 Results
	6 Conclusion
	7 Acknowledgements
	References

