Euchre Al

August Nord
Earlham College
Richmond, Indiana, USA

Abstract

Euchre is a cooperative-style, imperfect information card
game played using a subset of cards from a standard playing
card deck. Players are paired with a partner and attempt
to win the most points for their team while not being able
to know the cards in anyone’s hand but their own. These
elements are perhaps what has made it a popular game in
the United States Midwest, but they also pose challenges
when trying to create artificial intelligence agents to play
the game. This proposal will first cover the basics of the game
and its strategies. Next, it will overview the methods such as
Reinforcement Learning and Monte Carlo Tree Search, that
have been explored in the creation of Euchre Al Finally, it
will suggest extending those methods into the calling phase
of the game and offer a design structure for the project we
propose to carry out.

ACM Reference Format:

August Nord. 2018. Euchre Al In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation emai
(Conference acronym 'XX). ACM, New York, NY, USA, 5 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

Games have long been a popular field of study in computer
science as they provide a space in which the behavior of meth-
ods and algorithms can be studied. Further, there are two
main categories of board and card games: those of “perfect
information” and those of “imperfect information.” Perfect
information refers to games where the complete state of the
game is viewable to every player. Among these, chess and go
are probably the most well known. In Euchre and other im-
perfect information games, however, some of the information
about the current game state is hidden from the player. Thus,
a player must use the information they have—primarily the
cards in their hand and the cards that have been played—to
make an assessment on what card might be the best move.
They do this while not knowing how the other cards are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/XXXXXXX.XXXXXXX

distributed between the deck and the other players. Another
aspect that makes Euchre particularly interesting to study
is that it is played with a partner. This shifts the emphasis
from each individual greedily trying to win to cooperating
with each other in order to come out victorious together.
Euchre has been researched before, but many approaches
focus on only the main part of game play—the playing phase.
This study aims to broaden this scope as it takes a look
at a slightly smaller, but equally important, aspect of the
game—the calling phase. We will create agents that use a
number of methods that have been studied, and then test
their performance against each other to see which win most
frequently. By combining this work together, we hope to
create a more satisfying playable version of the game.

2 Background
2.1 Game Basics

As mentioned, there are two phases in a hand of Euchre:
the calling phase and the playing phase. Before either of
these begin, the four players are dealt five cards apiece with
the remaining four cards placed aside as the “kitty”” Next,
the top card of the kitty is flipped up and the calling phase
begins. Each individual has a chance, in turn, to decide if
they would like the suit of this card to become the trump suit.
A player who calls asserts that, based on their current hand
and with the help of their partner, they believe they can win
the round. If the suit is called, the player who dealt picks up
the face-up card and discards one from their hand face down.
If the suit is not called, players have a chance, in turn, to
decide if they would like to call one of the other three suits
as trump. If nothing is called, either the dealer is forced to
call or the hand is redealt. Once trump has been decided, the
playing phase begins. Play happens in five rounds, or “tricks,”
similar to play in the card games Hearts, Spades, and Bridge.
In these tricks, each player chooses one card to play in turn.
Once everyone has had a chance to play, whoever played the
highest value card takes the trick for their team. The team
who takes three or more of the five tricks scores points from
that hand. Typically, a number of hands are played until one
team reaches 10 points.

2.2 Know the Rules

At any point in the playing phase, a player has at most five
available cards to choose from. However, even when this is
the case, often the rules dictate that there are fewer than
five valid plays. Due to this small number of choices, simply
having an agent that knows the rules of the game allows for

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym *XX, June 03-05, 2018, Woodstock, NY

surprisingly good performance. In his thesis, Holmes plays
agents who have been given the rules against those whom
had to learn them through training observation. He finds that
overwhelmingly the rule-following agents preform better
[4]. Similarly, in Seelbinder’s thesis, he creates a RANDOM
agent that simply picks randomly between valid plays. He
is surprised to find it often beats his agents with the simple
HIGH and LOW strategies [6].

2.3 Cooperative Play

The HIGH agent and it’s slightly more sophisticated HIGH!
counterpart always play high or always play high if they
have any chance at winning, respectively. In this way, win-
ning each hand is prioritized. These two perform well, but
lack when it comes to cooperating with the partner. Since
tricks taken by the partner also count for the team, to play
your high cards when your partner already has the trick
is often a poor decision in the long run. Thus, Seelbinder
explores a User Friendly (UF) agent that yields to the partner
in such instances. However, he finds that this agent has the
opposite problem and is instead too passive. His UF.5 agent
combines the aggressive HIGH! and passive UF strategies
to form an even stronger agent. In terms of cooperation,
Seelbinder also finds that having teams that play different
strategies can also be effective. For example, the team of
LOW and HIGH outperformed a double RANDOM team. All
this evidence indicates that in whatever approach we take, a
balance between passive and aggressive play styles amongst
teammates must be fine tuned.

2.4 MDPs

One common way to frame the game of Euchre is as a set of
Markov Decision Processes (MDPs). In an MDP, we define
the state of the game, a number of actions that could be
taken, resulting rewards from those actions, and finally the
new state of the game. Our goal then is to apply a variety
of methods to figure out which action leads to the highest
reward. In the playing phase of Euchre, this looks like de-
ciding which card is the best card to play to win the round.
However, due to hidden state information (i.e., not know-
ing what cards each player has), we cannot be sure what
the eventual reward will be, but rather must use what we
know to make a guess. This particular case is referred to as
Partially Observable MDPs (POMDPs), as the states are not
fully observable [7].

3 Methods
3.1 Reinforcement Learning

Reinforcement Learning (RL) is one way to tackle MDPs
and POMDPs. RL techniques set the agent up to experiment
around the domain and then use what it learns based on
the rewards of those simulations to create a structure of
how to behave in a way that maximizes rewards. In Euchre,

August Nord

Reward to improve Q

State | (YRS H O Next

a . 1 per
Vec . X Y - Q action State
S : Environment :>
O L
Q ﬂ:{>
argmax ((s,a)
a

Figure 1. The Structure of Deep Q-Learning [5]

this is more complex than the HIGH! agent in that it looks
not just at short term reward of winning the trick, but aims
to maximize rewards across the whole hand. In his Euchre
research, Pugh [5] explores two types of RL: Deep Q-learning
(DQL) and Neural Fictitious Self-Play (NFSP).

In RL, the letter q is often used to refer to the expected
reward of any state, action pair. Q-learning is a set of tech-
niques then that looks to find the optimal g-value. Often
this is done by updating a table of q-values as a series of
simulations is run. DQL is a variant of this, that instead uses
a neural network to try to find the optimal g-value for the
state, action pair. Pugh’s example of this structure can be
seen in Figure 1. Note the neural network that takes in the
state information and returns a set of q-values.

NFSP is a RL approach introduced by Heinrich and Silver
[3]. It uses two neural networks to learn. The first trains
from information playing against other agents. The second,
does a supervised learning using the data from its own play.
It combines knowledge of these two styles together to decide
on the best course of action.

Though the DQL and NFSP agents do not vastly outper-
form rule-based models, they do perform well enough to
merit more exploration. Pugh’s data set is available on github
and is an extension of a program called RLCard [8]. This
toolkit is also openly sourced on github. It is designed specif-
ically to allow for exploration of RL techniques in card games.

3.2 Monte Carlo Search Trees

Another approach for handling imperfect information is to
run a set of simulations where you pretend that all the infor-
mation is known. This method is referred to as determiniza-
tion or Monte Carlo sampling [2]. In Euchre, this would
look like the system imagining a number of possible hands,
running games to determine what the best card to play in
each game is, and then averaging that out to decide what
the best move would be. This is extended into Monte Carlo
Search Trees (MCST) which also runs a series of simulations
to make an estimate. MCST views the game as a search tree
and the actions as the edges in that tree. It takes the current
node or state, selects one of its children, and runs a simula-
tion of random moves from that point to see if it reaches a

Euchre Al

Figure 2. A Monte Carlo Search Tree after 6 simulations. The
red nodes are those which, when explored, led to a win. Blue
node simulations were losses. Note that the wins and losses
of the child nodes affect the parent node’s win probability.

win. If it does, it positively updates that node’s probability of
winning. If it doesn’t, it negatively updates it. On this first
pass through, since the probability is only based on the one
simulation, it is likely not very accurate. However, as more
and more decisions are explored, it is gradually able to gain
a better picture of the state space. It then selects the action
with the highest probability of winning. This algorithm can
be considered anytime as after that first pass it is able to
return a solution.

In his blog post, Bravender explores Information Set MCST
in the Euchre domain. This slight variation uses the play
history to randomly distribute what cards the other players
might have and runs the MCTS using those [1].

4 Design

This project focuses on the calling phase of Euchre which,
as mentioned, is an area that has seen less research. Yet,
the calling phase is as crucial a part of the game as the
playing phase. Deciding whether to call trump or not is a
key decision that influences the whole round. We believe
that even applying a rule-based approach to this part of the
game would create a new baseline from which techniques
like MCTS and RL can further be compared. Beyond the
decision to call or not, knowledge from the calling phase
can be used to gain insight on what the other players hands
possibly looks like which can effect the probabilities in the
playing phase. For example, if someone passes on picking
up the highest heart, it is then improbable that they have
high hearts in their hand; Otherwise, they would not have
passed.

Conference acronym *XX, June 03-05, 2018, Woodstock, NY

Train
Games

Test
Games

Data
(win/loss)

Figure 3. Project Framework

4.1 Environment

We will start by utilizing the code Pugh [5] implements,
which is an extension of the RLCard toolkit [8]. This code
environment was developed for concepts of Reinforcement
Learning to be applied to various card game domains. Pugh
took the step of extending it to include Euchre and then has
a number of agents defined. We hope to work with MCTS
in this environment too, but whether it is suitable for that
remains to be seen.

4.2 The Agents

Presently, we plan to create four different agents: a random
agent, a rule-based agent, a MCST agent, and a DQL agent.
In the calling phase, the random agent will randomly decide
to call trump or not. While playing, it will likewise pick a
card between the valid options at random. Slightly more
sophisticated, the rule-based agent will attempt to mirror
human play by following a set of rules that guide its play.
For example, many people play that if they have three or
more of a suit, they call that suit as trump. The MCST agent
will function as previously described. There is a risk that
starting from the calling phase could cause the program to
take an unreasonable amount of time to come up with a good
solution. The trump call has a lot of weight on the hand, so
there is potentially a lot of computation involved in running
simulation games with each call. The final agent, DQL, will
requires a round of training before it can begin playing. We
will feed the network a number of games to learn from so it
has an idea of good Q values.

4.3 Testing

Once all agents have been created, they be played against
each other in a strategic series of games. This process will
look much like the testing Seelbinder [6] did with his agents,
with the key difference that the games will begin at the
calling phase, not the playing phase. The analysis of this
result will likely be fairly complex as we expect each team
dynamic to be unique.

Conference acronym *XX, June 03-05, 2018, Woodstock, NY

August Nord

Table 1. Timeline

Week Work
Week 1 Review plan, DQL, MCST, and RLcard
Week 2 Create Random and Rules Agents
Week 3 Start DQL and MCST agents
Week 4 First draft of paper
Week 5 First draft of software
Week 6 Correct/polish software and agents
Week 8 Run tests and Collect Data
Week 9 Analyze results, Second draft of Paper

Week 10 | First draft demonstration video, if on track: start user interface version

Week 11
Week 12
Week 13
Week 14
Finals

First draft poster
Third draft paper
Second draft demonstration video
Second draft poster
Final versions of paper, poster, demonstration video

4.4 A Playable Version

If time allows, the final piece of the puzzle will be to create
a user interface that allows a human player to play Euchre
with three computer agents. What method is used for the
strategies of the computer agents will be based on the results
of testing with the aim to provide the best user experience.
Due to familiarity with the tool, we propose Unity as the cre-
ation platform for the Euchre interface. There are a number
of smaller rules and special game cases in Euchre that this
version of the game will not plan to implement. However,
the core of the playing experience—the calling and playing
phases—will be there.

Acknowledgments

I would like to thank David Barbella and Micah Nord for pro-
viding detailed feedback throughout the process of creating
this proposal.

References

[1] Dan Bravender. 2017. Over 1 billion tricks played - Informa-
tion Set Monte Carlo Tree Search Euchre simulation database.
https://dan.bravender.net/2017/6/9/Over_1_billion_tricks_played_-
_Information_Set_Monte_Carlo_Tree_Search_Euchre_simulation_
database.html. Accessed: Oct. 9, 2023.

[2] PeterI. Cowling, Edward J. Powley, and Daniel Whitehouse. 2012. Infor-
mation set monte carlo tree search. IEEE Transactions on Computational
Intelligence and Al in Games 4, 2 (2012), 120-143.

[3] Johannes Heinrich and David Silver. 2016. Deep reinforcement learn-
ing from self-play in imperfect-information games. arXiv preprint
arXiv:1603.01121 (2016).

[4] Michael J. Holmes. 2001. Machine learning in euchre: a comparison of
techniques. Ph. D. Dissertation. University of Northern Iowa.

[5] EliPugh. 2020. Learning to Play Euchre With Model-Free Reinforcement
Learning. (2020).

[6] Benjamin E. Seelbinder. 2012. Cooperative Artificial Intelligence in the
Euchre Card Game. University of Nevada, Reno.

[7] Stelios Triantafyllou and Goran Radanovic. 2023. Towards computa-
tionally efficient responsibility attribution in decentralized partially
observable MDPs. arXiv preprint arXiv:2302.12676 (2023).

[8] Daochen Zha, Kwei-Herng Lai, Yuanpu Cao, Songyi Huang, Ruzhe
Wei, Junyu Guo, and Xia Hu. 2019. Rlcard: A toolkit for reinforcement
learning in card games. arXiv preprint arXiv:1910.04376 (2019).

https://dan.bravender.net/2017/6/9/Over_1_billion_tricks_played_-_Information_Set_Monte_Carlo_Tree_Search_Euchre_simulation_database.html
https://dan.bravender.net/2017/6/9/Over_1_billion_tricks_played_-_Information_Set_Monte_Carlo_Tree_Search_Euchre_simulation_database.html
https://dan.bravender.net/2017/6/9/Over_1_billion_tricks_played_-_Information_Set_Monte_Carlo_Tree_Search_Euchre_simulation_database.html

	Abstract
	1 Introduction
	2 Background
	2.1 Game Basics
	2.2 Know the Rules
	2.3 Cooperative Play
	2.4 MDPs

	3 Methods
	3.1 Reinforcement Learning
	3.2 Monte Carlo Search Trees

	4 Design
	4.1 Environment
	4.2 The Agents
	4.3 Testing
	4.4 A Playable Version

	Acknowledgments
	References

