
Euchre AI
August Nord
Earlham College

Richmond, Indiana, USA

Abstract
Euchre is a cooperative-style, imperfect information card
game played using a subset of cards from a standard playing
card deck. Players are paired with a partner and attempt
to win the most points for their team while not being able
to know the cards in anyone’s hand but their own. These
elements are perhaps what has made it a popular game in
the United States Midwest, but they also pose challenges
when trying to create arti�cial intelligence agents to play
the game. This paper will �rst cover the basics of the game,
its strategies, and the previous research done in this �eld.
Next, it will overview the methods, such as Reinforcement
Learning and Monte Carlo Tree Search, that we explored in
the creation of our agent models. And �nally, it will share
the results and conclusions made from testing these agents.

1 Introduction
Games have long been a popular �eld of study in computer
science as they provide a space inwhich the behavior ofmeth-
ods and algorithms can be studied. Further, there are two
main categories of board and card games: those of “perfect
information” and those of “imperfect information.” Perfect
information refers to games where the complete state of the
game is viewable to every player. Among these, chess and go
are probably the most well known. In Euchre and other im-
perfect information games, however, some of the information
about the current game state is hidden from the player. Thus,
a player must use the information they have—primarily the
cards in their hand and the cards that have been played—to
make an assessment on what card might be the best move.
They do this while not knowing how the other cards are
distributed between the deck and the other players.

Another aspect that makes Euchre particularly interesting
to study is that it is played with a partner. This shifts the
emphasis from each individual greedily trying to win to
cooperating with each other in order to come out victorious
together.

Euchre has been researched before [1] [4] [5] [6], but many
approaches focus on only the main part of game play—the
playing phase. This study aims to broaden this scope as it
takes a look at a slightly smaller, but equally important, as-
pect of the game—the calling phase. We will create agents
that use a number of methods that have been studied, and
then test their performance against each other to see which
win most frequently. By combining this work together, we
hope to create the algorithmic foundation for a more satisfy-
ing playable version of the game.

2 Background
2.1 Game Basics
As mentioned, there are two phases in a hand of Euchre: the
calling phase and the playing phase. Before either of these
begin, the four players are dealt �ve cards apiece with the
remaining four cards placed aside as the “kitty.” Next, the top
card of the kitty is �ipped up and the calling phase begins.
Each individual has a chance, in turn, to decide if they would
like the suit of this card to become the trump suit. A player
who calls asserts that, based on their current hand and with
the help of their partner, they believe they can win the round.
If the suit is called, the player who dealt picks up the face-up
card and discards one from their hand face down. If the suit
is not called, players have a chance, in turn, to decide if they
would like to call one of the other three suits as trump. If
nothing is called, either the dealer is forced to call or the
hand is redealt.
Once trump has been decided, the playing phase begins.

Play happens in �ve rounds, or “tricks,” similar to play in the
card games Hearts, Spades, and Bridge. In these tricks, each
player chooses one card to play in turn. Once everyone has
had a chance to play, whoever played the highest value card
takes the trick for their team. The team who takes three or
more of the �ve tricks scores points from that hand. Typically,
a number of hands are played until one team reaches 10
points.

Figure 1. Sample hand from a Euchre Game



Senior Capstone Project, May 07, 2024, Richmond, IN August Nord

2.2 Know the Rules
At any point in the playing phase, a player has at most �ve
available cards to choose from. However, even when this is
the case, often the rules dictate that there are fewer than
�ve valid plays. Due to this small number of choices, simply
having an agent that knows the rules of the game allows for
surprisingly good performance. In his thesis, Holmes plays
agents who have been given the rules against those whom
had to learn them through training observation. He �nds that
overwhelmingly the rule-following agents preform better
[4].
Similarly, in Seelbinder’s thesis, he creates a RANDOM

agent that simply picks randomly between valid plays. He
is surprised to �nd it often beats his agents that play with
simple HIGH and LOW strategies [6].

2.3 Cooperative Play
The HIGH agent and it’s slightly more sophisticated HIGH!
counterpart always play high or always play high if they
have any chance at winning, respectively. In this way, win-
ning each hand is prioritized. These two perform well, but
lack when it comes to cooperating with the partner. Since
tricks taken by the partner also count for the team, to play
your high cards when your partner already has the trick
is often a poor decision in the long run. Thus, Seelbinder
explores a User Friendly (UF) agent that yields to the partner
in such instances. However, he �nds that this agent has the
opposite problem and is instead too passive. His UF.5 agent
combines the aggressive HIGH! and passive UF strategies
to form an even stronger agent. In terms of cooperation,
Seelbinder also �nds that having teams that play di�erent
strategies can also be e�ective. For example, the team of
LOW and HIGH outperformed a double RANDOM team. All
this evidence indicates that in whatever approach we take, a
balance between passive and aggressive play styles amongst
teammates must be �ne tuned.

2.4 MDPs
One common way to frame the game of Euchre is as a set of
Markov Decision Processes (MDPs). In an MDP, we de�ne
the state of the game, a number of actions that could be
taken, resulting rewards from those actions, and �nally the
new state of the game. Our goal then is to apply a variety
of methods to �gure out which action leads to the highest
reward. In the playing phase of Euchre, this looks like de-
ciding which card is the best card to play to win the round.
However, due to hidden state information (i.e., not know-
ing what cards each player has), we cannot be sure what
the eventual reward will be, but rather must use what we
know to make a guess. This particular case is referred to as
Partially Observable MDPs (POMDPs), as the states are not
fully observable [7].

Figure 2. The Structure of Deep Q-Learning [5]

3 Methods
3.1 Reinforcement Learning
Reinforcement Learning (RL) is one way to tackle MDPs
and POMDPs. RL techniques set the agent up to experiment
around the domain and then use what it learns based on
the rewards of those simulations to create a structure of
how to behave in a way that maximizes rewards. In Euchre,
this is more complex than the HIGH! agent in that it looks
not just at short term reward of winning the trick, but aims
to maximize rewards across the whole hand. In his Euchre
research, Pugh [5] explores two types of RL: Deep Q-learning
(DQL) and Neural Fictitious Self-Play (NFSP).

In RL, the letter q is often used to refer to the expected
reward of any state, action pair. Q-learning is a set of tech-
niques then that looks to �nd the optimal q-value. Often
this is done by updating a table of q-values as a series of
simulations is run. DQL is a variant of this, that instead uses
a neural network to try to �nd the optimal q-value for the
state, action pair. Pugh’s example of this structure can be
seen in Figure 1. Note the neural network that takes in the
state information and returns a set of q-values.

NFSP is a RL approach introduced by Heinrich and Silver
[3]. It uses two neural networks to learn. The �rst trains
from information playing against other agents. The second,
does a supervised learning using the data from its own play.
It combines knowledge of these two styles together to decide
on the best course of action.
Though the DQL and NFSP agents do not vastly outper-

form rule-based models, they do perform well enough to
merit more exploration. Pugh’s data set is available on github
and is an extension of a program called RLCard [8]. This
toolkit is also openly sourced on github. It is designed specif-
ically to allow for exploration of RL techniques in card games.

3.2 Monte Carlo Search Trees
Another approach for handling imperfect information is to
run a set of simulations where you pretend that all the infor-
mation is known. This method is referred to as determiniza-
tion or Monte Carlo sampling [2]. In Euchre, this would
look like the system imagining a number of possible hands,



Euchre AI Senior Capstone Project, May 07, 2024, Richmond, IN

running games to determine what the best card to play in
each game is, and then averaging that out to decide what
the best move would be. This is extended into Monte Carlo
Search Trees (MCST) which also runs a series of simulations
to make an estimate. MCST views the game as a search tree
and the actions as the edges in that tree. It takes the current
node or state, selects one of its children, and runs a simula-
tion of random moves from that point to see if it reaches a
win. If it does, it positively updates that node’s probability of
winning. If it doesn’t, it negatively updates it. On this �rst
pass through, since the probability is only based on the one
simulation, it is likely not very accurate. However, as more
and more decisions are explored, it is gradually able to gain
a better picture of the state space. It then selects the action
with the highest probability of winning. This algorithm can
be considered anytime as after that �rst pass it is able to
return a solution.

In his blog post, Bravender explores Information Set MCST
in the Euchre domain. This slight variation uses the play
history to randomly distribute what cards the other players
might have and runs the MCTS using those [1].

4 Design
This project focuses on the calling phase of Euchre which,
as mentioned, is an area that has seen less research. Yet,
the calling phase is as crucial a part of the game as the
playing phase. Deciding whether to call trump or not is a
key decision that in�uences the whole round. We believe
that even applying a rule-based approach to this part of the
game would create a new baseline from which techniques

Figure 3.AMonte Carlo Search Tree after 6 simulations. The
red nodes are those which, when explored, led to a win. Blue
node simulations were losses. Note that the wins and losses
of the child nodes a�ect the parent node’s win probability.

Figure 4. Data Architecture Diagram

like MCTS and RL can further be compared. Beyond the
decision to call or not, knowledge from the calling phase
can be used to gain insight on what the other players hands
possibly looks like which can e�ect the probabilities in the
playing phase. For example, if someone passes on picking
up the highest heart, it is then improbable that they have
high hearts in their hand; Otherwise, they would not have
passed.

4.1 Environment
We started by utilizing the code Pugh [5] implements, which,
as mentioned, is an extension of the RLCard toolkit [8]. This
code environment was developed for concepts of Reinforce-
ment Learning to be applied to various card game domains.
Pugh took the step of extending it to include a Euchre envi-
ronment and a Euchre rule-based agent. Using this as a base,
we modi�ed the environment to allow for a MCST agent as
well as updating the hand scoring to more accurately mirror
typical scoring rules.

4.2 The Agents
We worked with three di�erent agents: a random agent, a
rules agent, and a MCST agent.
The random agent functions �rst by randomly choosing

to call trump or not. While playing, it likewise picks a card
between the valid options at random. Our environment never
allows for invalid plays.
Slightly more sophisticated, the rules agent attempts to

mirror human play by following a set of rules that guide
its play. For example, many people play that if they have
three or more of a suit in their hand, they call that suit as
trump. Another common strategy it uses is to always lead
the highest card if possible.
The MCST agent functions as discussed in Section 3.2 of

this paper. Each time it runs a simulation play, it creates a new
euchre environment instance using the information available
to the agent about the current game state. It then randomly
deals out the remaining possible cards to the other playing
agents. Next, the hand is run to completion as if all agents



Senior Capstone Project, May 07, 2024, Richmond, IN August Nord

Figure 5. Results of di�erent team pairings playing 10,000 hands. Number re�ects the cumulative net score for team one

are playing randomly, and the result is back-propagated
up through the tree of possible actions. Since the possible
actions the MCST agent will have available to make on their
turn is dependent on what actions the other agents take, the
steps the other agents take are also simulated using random
play.

4.3 Testing
Once all agents were created and running, we played them
against each other in a strategic series of games. This process
looked much like the testing Seelbinder [6] did with his
agents, with the key di�erence that the games began at the
calling phase, not the playing phase. Two key types of test
games were tried: those with same agent pairs and those with
mixed-agent pairs. For this round of testing, every match-
up played 10,000 hands. The Rule and Random agents can
perform this series of tests in a matter of minuets, but due to
the large number of simulations in the algorithm, the MCST
agent tests took many hours to complete. Further wishing
to examine the functionality of the MCST agent, we ran
100 hands against a Double Random team with increasing
number of simulations from 0 to 200. Ideally, this would
result in a monotonic increase of scores as the number of
simulations increases. Lastly, we attempted to improve the
MCST agent by running the simulations using Rule agents
as opposed to Random ones. This version was also tested
against Double Random on increasing simulation numbers 0
to 200.

5 Results
The results of the �rst test are presented in Figure 5. The
given number represents the net score for team one which
played the strategy as labeled across the top against each
other pair. To further contextualize, we note that the theoret-
ical range of these values is -20,000 to 20,000 as the minimum

score for each hand is -2 (representing the case of 2 points
for team two) and the maximum score is 2. We see that the
Double Rule agent team consistently won and the Double
Random agent team consistently lost. We had expected the
Double MCST agent team to outperform all the other agents,
but it’s performance was not as good as the Rule agent. Con-
sidering the high computational resources it takes to run the
MCST agent, we conclude that the Rules agent is a signi�-
cantly better option. The results of the increasing simulation
number tests using both the MCST agent that runs simu-
lations using Random agents and the one that runs using
Rule agents are shown in Figure 6. In general, the Rules
version does appear to do slightly better than the Random
one, though the variance is high for both cases. There is an
upward trend as simulations increase, with the agents rarely
scoring negatively after about 30 simulations. This informa-
tion is useful for future testing as the simulation number is
a large contributing factor to the computational time, and
this test justi�es not using a larger simulation number.

6 Future Work
Signi�cant infrastructure for a DQL agent has already been
put in place by Pugh and the developers of RLCard, however,
we �nd that the euchre code needs to be updated to match
the newer implementations of this agent in the package. A
level of testing and �ne tuning could then be done comparing
a DQL agent to the agents explored in this study.

It would be ideal if as the number of simulations increased
on the MCST agent, the resulting score was non-decreasing.
We imagine the extreme variance we see represented has a
lot to do with the imperfect information aspect of euchre.
For our determinization, we simply used a random redealing
of cards, but there are some clues from the cards played as
to what cards might be in the other players hands that could



Euchre AI Senior Capstone Project, May 07, 2024, Richmond, IN

Figure 6. Results of Double MCST vs. Double Random playing 100 hands

be accounted for. Further testing could also be done to tune
the exploration weight of the MCST algorithm.

Additionally, our environment does not implement a num-
ber of special case rules that are standard while playing
Euchre. Most notably, the model could be expanded to in-
clude functionality for “going alone”, a special game case
where only three of the four players play and up to four
points are at stake.
Lastly, we would love to see this work expanded into a

playable version where a human player can interactively
play with the computer Euchre agents.

Acknowledgments
I would like to thank David Barbella and Micah Nord for
providing detailed feedback throughout the process of creat-
ing the project proposal. And thanks to Charlie Peck for his
guidance on the project and paper.



Senior Capstone Project, May 07, 2024, Richmond, IN August Nord

References
[1] Dan Bravender. 2017. Over 1 billion tricks played - Informa-

tion Set Monte Carlo Tree Search Euchre simulation database.
h�ps://dan.bravender.net/2017/6/9/Over_1_billion_tricks_played_-
_Information_Set_Monte_Carlo_Tree_Search_Euchre_simulation_
database.html. Accessed: Oct. 9, 2023.

[2] Peter I. Cowling, Edward J. Powley, and Daniel Whitehouse. 2012. Infor-
mation set monte carlo tree search. IEEE Transactions on Computational
Intelligence and AI in Games 4, 2 (2012), 120–143.

[3] Johannes Heinrich and David Silver. 2016. Deep reinforcement learn-
ing from self-play in imperfect-information games. arXiv preprint
arXiv:1603.01121 (2016).

[4] Michael J. Holmes. 2001. Machine learning in euchre: a comparison of
techniques. Ph. D. Dissertation. University of Northern Iowa.

[5] Eli Pugh. 2020. Learning to Play EuchreWithModel-Free Reinforcement
Learning. (2020).

[6] Benjamin E. Seelbinder. 2012. Cooperative Arti�cial Intelligence in the
Euchre Card Game. University of Nevada, Reno.

[7] Stelios Triantafyllou and Goran Radanovic. 2023. Towards computa-
tionally e�cient responsibility attribution in decentralized partially
observable MDPs. arXiv preprint arXiv:2302.12676 (2023).

[8] Daochen Zha, Kwei-Herng Lai, Yuanpu Cao, Songyi Huang, Ruzhe
Wei, Junyu Guo, and Xia Hu. 2019. Rlcard: A toolkit for reinforcement
learning in card games. arXiv preprint arXiv:1910.04376 (2019).

https://dan.bravender.net/2017/6/9/Over_1_billion_tricks_played_-_Information_Set_Monte_Carlo_Tree_Search_Euchre_simulation_database.html
https://dan.bravender.net/2017/6/9/Over_1_billion_tricks_played_-_Information_Set_Monte_Carlo_Tree_Search_Euchre_simulation_database.html
https://dan.bravender.net/2017/6/9/Over_1_billion_tricks_played_-_Information_Set_Monte_Carlo_Tree_Search_Euchre_simulation_database.html

	Abstract
	1 Introduction
	2 Background
	2.1 Game Basics
	2.2 Know the Rules
	2.3 Cooperative Play
	2.4 MDPs

	3 Methods
	3.1 Reinforcement Learning
	3.2 Monte Carlo Search Trees

	4 Design
	4.1 Environment
	4.2 The Agents
	4.3 Testing

	5 Results
	6 Future Work
	Acknowledgments
	References

