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ABSTRACT
Recent advancements in deep learning, especially the application
of Convolutional Neural Networks (CNNs), have guided significant
progress in Facial Emotion Recognition (FER). CNNs excel at auto-
matically extracting facial features, leading to the development of
robust FER systems. Deep Convolutional Neural Networks (DCNNs)
have further elevated FER capabilities, outperforming traditional
CNNs. However, DCNNs still face a limitation concerning their de-
mand for high-dimensional datasets. To address this constraint, this
paper proposes an ensemble model combining Self-Cure Network
(SCN) with DCNN, bolstered by transfer learning.
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1 INTRODUCTION
Facial expressions play a vital role in human communication, act-
ing as a universal language conveying emotions, intentions, and
social cues [5]. The accurate recognition and interpretation of these
expressions have far-reaching implications across various domains
such as psychological treatment or surveillance [9]. Consequently,
Facial Expression Recognition (FER) has attracted substantial atten-
tion and investment over the years.
Among the methods used in FER, Convolutional Neural Networks
(CNNs) have gained immense popularity due to their ability to
automatically extract features and adapt to diverse datasets with
high precision. Deep Convolutional Neural Networks (DCNNs), a
specialized form of CNNs, excel at processing high-dimensional
images. However, the widespread adoption of DCNNs has been lim-
ited by the substantial computational effort and extensive training
data they demand.
To enhance the training process of DCNNs, Akhand et al. [1] intro-
duced a promising approach—pre-training DCNN models through
transfer learning. While this method has improved the efficiency
and accuracy of DCNNs, it encounters challenges when dealing
with datasets containing low-resolution images or highly imbal-
anced cases. To overcome these obstacles, this paper will propose
the fusion of the Self-Cure Network [13] and DCNN models utiliz-
ing transfer learning, offering a solution to these limitations.
The paper is structured in four sections: Section 2 provides back-
ground information and related works. Section 3 describes the
design of the project. Section 4 provides the timeline of the project.

2 RELATEDWORK
This section will provide the background knowledge related to the
method proposed in this paper including topics like DCNN, transfer
learning, and SCN.

2.1 Transfer learning based Deep Convolutional
Neural Networks Model

ACNN typically comprises a series of convolutional layers, followed
by pooling layers and fully connected layers. DCNNs are a kind of
CNN that are characterized by their depth, consisting of multiple
layers, including convolutional, pooling, and fully connected layers.
These layers collaborate to autonomously learn and extract features
from images. Convolutional layers capture basic features like edges
and textures, while deeper layers identify complex patterns and
structures [1].
Building and training a DCNN from scratch is a heavy task due to
its complexity. To overcome this challenge, this project employs the
approach proposed by Akhand et al. [1], which involves utilizing
pre-trained DCNN models. Some popular DCNN models such as
AlexNet [2], VGG, and ResNet [8] have demonstrated exceptional
performance in image classification tasks on ImageNet [12], a vast
dataset of labeled images. These models are pre-trained on Ima-
geNet, where they acquire the ability to recognize a wide range of
objects and features within images. This is where the concept of
transfer learning comes into play.
Transfer learning is a machine learning technique that applies
knowledge learned from one task to a different yet related task. In
DCNN, transfer learning entails taking a pre-trained model, such
as one trained on ImageNet, and adapting it to a new task, such as
facial emotion recognition. This approach leverages the knowledge
acquired during the pre-training phase, providing the model with a
strong foundation, even when the new task has limited data avail-
able. The method proposed by Akhand et al. [1] underscores the
significance of fine-tuning within the context of transfer learning.
Fine-tuning is a critical step in transfer learning. It involves modify-
ing the pre-trained DCNN by replacing or adding layers specifically
tailored to the new task, such as facial emotion recognition. Typi-
cally, the existing convolutional base is retained, and new layers,
often fully connected layers, are added to adapt the model to the
target task. These newly added layers are initialized with random
weights and are then trained using the new dataset.
In the case of transfer learning-basedDCNN for FER, the pre-trained
model (e.g., VGG-16 trained on ImageNet) receives modifications
to suit emotion recognition by redefining its dense layers. Subse-
quently, fine-tuning is executed using emotion data. In this process,
the last dense layers of the pre-trained model are replaced with
new dense layers, which are designed to recognize facial images
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Figure 1: The architecture of DCNN with a detailed pre-trained VGG-16 model with dense layers for FER [1]

categorized into one of seven emotion classes, such as afraid, angry,
disgusted, sad, happy, surprised, and neutral.
The complete model, composed of the pre-trained DCNN and the
newly added dense layers, facilitates the fine-tuning of dense layers
and selected layers of the pre-trained model using emotion data.
The pre-trained VGG-16 model, as shown in Figure 1, consists of
five convolutional blocks, with each block featuring two or three
convolutional layers and a pooling layer.

2.2 Self-Cure Network
Wang et al. [13] introduced the Self-Cure Network (SCN), an ex-
tension of conventional CNNs. The primary objective of SCN is to
address the challenges arising from the subjective nature of FER
datasets obtained from the internet, which often result in inconsis-
tent and erroneous labels. SCN comprises three essential compo-
nents: self-attention importance weighting, ranking regularization,
and relabeling. When given a dataset containing uncertain samples,
the system first extracts deep features using a backbone network
like CNNs. The self-attention importance weighting module assigns
significant weights to each image, while the rank regularization
module adjusts the attention weights to downplay the importance
of uncertain samples. Lastly, the relabeling module modifies some
of the uncertain samples within the low importance group. Figure
2 visually shows the structure of SCN: the process starts by using a
backbone CNN to extract features from facial images. Then, a self-
attention importance weighting module learns weights for each
sample based on facial features, influencing the loss calculation.
The rank regularization module uses these weights and applies con-
straints using a ranking operation and a margin-based loss function.
In the labeling module, reliable samples are identified by comparing
predicted probabilities with given labels. Mislabeled samples are
marked with red rectangles, and ambiguous ones with green dashed
rectangles. It’s important to note that the Self-Cure Network mainly
uses re-weighting to handle uncertainties and adjusts only certain
samples.
To assess the effectiveness of Self Cure Network (SCN), the study
conducted experiments using four distinct datasets: RAF-DB [10],
FERPlus [3], AffectNet [11], and a dataset referred to as WebEmo-
tion, which contained data collected from the Internet. The primary

focus was on addressing the challenge of incorrect or noisy anno-
tations, which led to the creation of the WebEmotion dataset. It
is a video dataset that was originally obtained from YouTube, but
for the purpose of this study, it was treated as an image dataset
by assigning emotion labels to individual frames. The dataset was
curated by searching for videos using a set of 40 emotion-related
keywords, combining them with 45 country-related keywords in-
cluding countries in Asia, Europe, Africa, and America and six age-
related keywords (baby, lady, woman, man, old man, old woman).
The WebEmotion dataset comprises the same eight emotion classes
as FERPlus [3], with each class being associatedwith various emotion-
related keywords. For example, the “happy” class is linked to key-
words such as happy, funny, ecstatic, smug, and kawaii. To establish
meaningful correlations between these keywords and the collected
videos, only the top 20 retrieved videos, each lasting less than four
minutes, were selected for inclusion in the dataset. This curation
process resulted in approximately 41,000 videos, which were fur-
ther segmented into 200,000 video clips, with the requirement that
a human face, detected using the Multi-task Cascaded Convolu-
tional Neural Networks (MTCNN) [14] face detection method, must
appear for at least five seconds in each clip. Moreover, they em-
ployed ResNet-18 [8] as the foundational network, which had been
pre-trained on the MS-Celeb-1M face recognition dataset [7]. The
extraction of facial features was performed from the final pooling
layer of this network.

3 DESIGN
In this project, an ensemble approach will be implemented, combin-
ing the SCN with a transfer learning-based DCNN using a stacking
strategy. The results obtained from this ensemble method will be
compared with the existing state-of-the-art methods to assess its
performance.

3.1 Implementation
For the implementation of this project, the integration of the Self-
Cure Network (SCN) and the Deep Convolutional Neural Network
(DCNN) will be achieved through a defined process. Both the SCN
and DCNNwill share the same pre-trained model, ResNet-18, which
has previously been trained on the extensive MS-Celeb-1M dataset.
To ensure data compatibility, image resizing will be done using
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Figure 2: The architecture of SCN [9]
The images are fed into a CNN backbone for feature extraction. The self-attention weighting module assigns weights to these features. The
rank regularization module takes the weights and constraint them with ranking operation and a margin-based loss function. The relabeling

module compare maximum predicted probabilities to the probabilities of given labels to find reliable samples. Mislabeled samples are
indicated with red line, and ambiguous ones with green dashed line.

PyTorch. Both models will also have the setting with their optimizer
being stochastic gradient descent or SGD and the learning rate
equal to 0.001. DCNN has 24 epochs and SCN has 70 epochs. The
resized images will serve as inputs for the DCNN, which features
the ResNet-18 model along with the addition of new dense layers
for FER-2013 and KDEF. The output of DCNN will be processed
only into the training phase of SCN, but not the testing phase. The
next step involves channeling the DCNN’s output into the SCN,
which will also make use of the same pre-trained ResNet-18 model.
The SCN’s role is to address uncertainties and improve the overall
quality of predictions, so the project will utilize the modules of SCN,
which happens during the training process. Hence, the output of
DCNNwill be loaded into the training phase with both the predicted
labels from DCNN and the target labels. The last module will work
on relabeling on the predicted label array from DCNN based on
prediction made from ResNet18. At the end, the result generated
by the SCN will serve as the final outcome for comparison and
evaluation against the original models.

3.2 Datasets
The project will use KDEF [4] dataset, which was developed by
Karolinska Institute, Department of Clinical Neuroscience, Section
of Psychology, Stockholm, Sweden. The dataset contains 4408 train-
ing images and 490 testing images with high-resolution and clear
labels of standard facial expression from multiple angles. KDEF in-
cludes 7 emotions: AF (afraid), AN (angry), DI (disgust), HA (happy),
NE (neutral), SA (sad), SU (surprise).
In addition to that, the project will use the FER-2013 [6] dataset,
which was derived from the Google search engine and consists

of a large set of faces automatically registered and labeled with
basic emotions. The images are more varied in terms of quality,
angle, lighting, and occlusion. FER-2013 includes 7 emotions: angry,
disgust, fear, happy, neutral, sad, surprise. This dataset has 28709
training images and 7178 testing images.

3.3 Project Setup

Figure 3: Data Architecture Diagram

Before training the models, I followed the data transformation
based on DCNN code source [1]. For training data, the images
are moderated using torchvision model from PyTorch. First, it
is resized to 224x224 pixels since this is a common input size for
many CNNs. After that, images are randomly flipped horizontally
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and converted to a torch.FloatTensor of shape (CxHxW). Images
are also normalized with a mean and a standard deviation: the
normalization values for the mean are [0.485, 0.456, 0.406]
and for the standard deviation are [0.229, 0.224, 0.225]. These
values are specific for model that has been pretrained on ImageNet
dataset, which is ResNet18 for this project.
For testing data, images are resized to 2256x256 pixels and cropped
at the center to 224x224 pixels. After that, testing images follow the
same conversion and normalization conditions as training images.
After preparing the data, the next step is loading the data using
DataLoader from PyTorch, which specify that each batch of data
will contain 4 images and after each epoch, the images will be
shuffle to prevent the model from the learning the order of the
images.

4 RESULT
4.1 DCNN
After training and evaluating on DCNN, the best accuracy for FER-
2013 is 65%:

Figure 4: FER-2013 visualization

Figure 5: DCNN on FER-2013 model accuracy

The best accuracy for KDEF if 91%:

Figure 6: KDEF visualization
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Figure 7: DCNN on KDEF model accuracy

4.2 SCN
When analyzing the performance of the original model on the
FER-2013 and KDEF datasets, I notice that the model achieves 97%
training accuracy on FER-2013 but only 68% on testing, while it
scores around 96% on KDEF for both training and validation. This
gap in performance on FER-2013 can be attributed to the use of a
relabeling module during training. This module adjusts the training
labels based on predictions from a pre-trained model, aiming to
correct mislabeled data. However, while this helps in enhancing
the reliability of the training data, it doesn’t necessarily improve
the model’s ability to generalize to new, unseen data. This suggests
that the high training accuracy may be due to the model overfit-
ting to the corrected labels rather than achieving true predictive
improvements, thus explaining the lower test accuracy. The better
performance of the model on the KDEF dataset as compared to
FER-2013 could also be influenced by the size of these datasets.
KDEF is significantly smaller than FER-2013, which might make it
easier for the model to fit well to the limited variety of examples
available in KDEF, resulting in higher accuracy.

Figure 8: SCN on KDEF model accuracy

Figure 9: SCN on FER-2013 model accuracy

4.3 SCN intergrating with DCNN
In the method proposed, both the predicted labels from DCNN and
the actual target labels on the testing dataset are input into the
training phase of SCN. This approach is designed to leverage the
relabelingmodule offered by SCN.However, as discussed previously,
this relabeling module doesn’t directly train the model to improve
its prediction capabilities; instead, it adjusts the labels based on
the predictions from the DCNN, aiming to enhance label accuracy
during training.
Because the relabeling function of the SCN modifies training labels
manually rather than improving the model’s ability to generalize,
I opted to include only the output from the DCNN in the SCN’s
training phase and excluded it from the testing phase. This decision
is based on the understanding that while the relabeling can improve
performance by cleaning up the labels, it does not necessarily equip
the model with the skills needed to perform better on test data.

Figure 10: SCN combined DCNN on KDEF model accuracy

In this process, the testing datasets from KDEF and FER-2013 are
utilized during the training phase of SCN. Despite KDEF having 490
samples and FER-2013 having 7178 samples, the accuracy graphs
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exhibit similar trends to the original model. There’s a slight devia-
tion in the curve for FER-2013, but both datasets ultimately achieve
high accuracy, with KDEF reaching 98% and FER-2013 hitting 97%.

Figure 11: SCN combined DCNN on FER-2013model accuracy

Overall, while using SCN on the output from DCNN does enhance
accuracy, there might be a bias in the process. This is because the
improvements dependmore on the modules in SCN’s training phase
rather than the capabilities of the SCN model itself.

5 FUTUREWORK
The project encounters challenges due to limited expertise in in-
tegrating deep learning models, potentially leading to oversights
during integration and evaluation. Therefore, improving the meth-
ods used to combine these models is essential for progressing in
this area. Moreover, it is crucial to test this approach on larger
datasets to verify its effectiveness. Although the KDEF dataset has
shown high accuracy with training using DCNN, the scope for
further improvement might be limited when integrating with SCN.
Nevertheless, the SCN’s modules show promise in enhancing pre-
dictions after receiving outputs from the DCNN. If these modules
can be effectively integrated into the testing phase, where more
data refinement is needed, and can further optimize the training
phase by adjusting the pre-trained model, this could be a beneficial
strategy to explore and test.
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